Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ann E. Ehrenhofer-Murray is active.

Publication


Featured researches published by Ann E. Ehrenhofer-Murray.


Molecular and Cellular Biology | 2003

The yeast N-alpha-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides

Matthias Gautschi; Sören Just; Andrej Mun; Suzanne Ross; Peter Rücknagel; Yves Dubaquie; Ann E. Ehrenhofer-Murray; Sabine Rospert

ABSTRACT The majority of cytosolic proteins in eukaryotes contain a covalently linked acetyl moiety at their very N terminus. The mechanism by which the acetyl moiety is efficiently transferred to a large variety of nascent polypeptides is currently only poorly understood. Yeast Nα -acetyltransferase NatA, consisting of the known subunits Nat1p and the catalytically active Ard1p, recognizes a wide range of sequences and is thought to act cotranslationally. We found that NatA was quantitatively bound to ribosomes via Nat1p and contained a previously unrecognized third subunit, the Nα -acetyltransferase homologue Nat5p. Nat1p not only anchored Ard1p and Nat5p to the ribosome but also was in close proximity to nascent polypeptides, independent of whether they were substrates for Nα -acetylation or not. Besides Nat1p, NAC (nascent polypeptide-associated complex) and the Hsp70 homologue Ssb1/2p interact with a variety of nascent polypeptides on the yeast ribosome. A direct comparison revealed that Nat1p required longer nascent polypeptides for interaction than NAC and Ssb1/2p. Δnat1 or Δard1 deletion strains were temperature sensitive and showed derepression of silent mating type loci while Δnat5 did not display any obvious phenotype. Temperature sensitivity and derepression of silent mating type loci caused by Δnat1 or Δard1 were partially suppressed by overexpression of SSB1. The combination of data suggests that Nat1p presents the N termini of nascent polypeptides for acetylation and might serve additional roles during protein synthesis.


BMC Molecular Biology | 2003

Interactions within the mammalian DNA methyltransferase family

Jean B Margot; Ann E. Ehrenhofer-Murray; Heinrich Leonhardt

BackgroundIn mammals, epigenetic information is established and maintained via the postreplicative methylation of cytosine residues by the DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Dnmt1 is required for maintenance methylation whereas Dnmt3a and Dnmt3b are responsible for de novo methylation. Contrary to Dnmt3a or Dnmt3b, the isolated C-terminal region of Dnmt1 is catalytically inactive, despite the presence of the sequence motifs typical of active DNA methyltransferases. Deletion analysis has revealed that a large part of the N-terminal domain is required for enzymatic activity.ResultsThe role played by the N-terminal domain in this regulation has been investigated using the yeast two-hybrid system. We show here the presence of an intra-molecular interaction in Dnmt1 but not in Dnmt3a or Dnmt3b. This interaction was confirmed by immunoprecipitation and was localized by deletion mapping. Furthermore, a systematic analysis of interactions among the Dnmt family members has revealed that DNMT3L interacts with the C-terminal domain of Dnmt3a and Dnmt3b.ConclusionsThe lack of methylating ability of the isolated C-terminal domain of Dnmt1 could be explained in part by a physical interaction between N- and C-terminal domains that apparently is required for activation of the catalytic domain. Our deletion analysis suggests that the tertiary structure of Dnmt1 is important in this process rather than a particular sequence motif. Furthermore, the interaction between DNMT3L and the C-terminal domains of Dnmt3a and Dnmt3b suggests a mechanism whereby the enzymatically inactive DNMT3L brings about the methylation of its substrate by recruiting an active methylase.


PLOS ONE | 2010

The Effect of Micrococcal Nuclease Digestion on Nucleosome Positioning Data

Ho-Ryun Chung; Ilona Dunkel; Franziska Heise; Christian Linke; Sylvia Krobitsch; Ann E. Ehrenhofer-Murray; Silke Sperling; Martin Vingron

Eukaryotic genomes are packed into chromatin, whose basic repeating unit is the nucleosome. Nucleosome positioning is a widely researched area. A common experimental procedure to determine nucleosome positions involves the use of micrococcal nuclease (MNase). Here, we show that the cutting preference of MNase in combination with size selection generates a sequence-dependent bias in the resulting fragments. This strongly affects nucleosome positioning data and especially sequence-dependent models for nucleosome positioning. As a consequence we see a need to re-evaluate whether the DNA sequence is a major determinant of nucleosome positioning in vivo. More generally, our results show that data generated after MNase digestion of chromatin requires a matched control experiment in order to determine nucleosome positions.


Journal of Biological Chemistry | 2014

A Novel Sirtuin 2 (SIRT2) Inhibitor with p53-dependent Pro-apoptotic Activity in Non-small Cell Lung Cancer

Gesine Hoffmann; Frank Breitenbücher; Martin Schuler; Ann E. Ehrenhofer-Murray

Background: Pharmacological inhibition of the NAD+-dependent deacetylase SIRT2 holds promise for cancer therapy by preventing deacetylation and inactivation of p53. Results: We identified two novel SIRT2 inhibitors that induce apoptosis in a p53-dependent fashion and activate three p53 target genes. Conclusion: Small-molecule inhibition of SIRT2 activates p53-dependent apoptosis in cancer cells. Significance: The compounds reported here are promising lead candidates for use in cancer treatment. Sirtuin 2 (SIRT2) is an NAD+-dependent protein deacetylase whose targets include histone H4 lysine 16, p53, and α-tubulin. Because deacetylation of p53 regulates its effect on apoptosis, pharmacological inhibition of SIRT2-dependent p53 deacetylation is of great therapeutic interest for the treatment of cancer. Here, we have identified two structurally related compounds, AEM1 and AEM2, which are selective inhibitors of SIRT2 (IC50 values of 18.5 and 3.8 μm, respectively), but show only weak effects on other sirtuins such as SIRT1, SIRT3, and yeast Sir2. Interestingly, both compounds sensitized non-small cell lung cancer cell lines toward the induction of apoptosis by the DNA-damaging agent etoposide. Importantly, this sensitization was dependent on the presence of functional p53, thus establishing a link between SIRT2 inhibition by these compounds and p53 activation. Further, treatment with AEM1 and AEM2 led to elevated levels of p53 acetylation and to increased expression of CDKN1A, which encodes the cell cycle regulator p21WAF1, as well as the pro-apoptotic genes PUMA and NOXA, three transcriptional targets of p53. Altogether, our data suggest that inhibition of SIRT2 by these compounds causes increased activation of p53 by decreasing SIRT2-dependent p53 deacetylation. These compounds thus provide a good opportunity for lead optimization and drug development to target p53-proficient cancers.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Rpd3-dependent boundary formation at telomeres by removal of Sir2 substrate

Stefan Ehrentraut; Jan M. Weber; J. Nikolaj Dybowski; Daniel Hoffmann; Ann E. Ehrenhofer-Murray

Boundaries between euchromatic and heterochromatic regions until now have been associated with chromatin-opening activities. Here, we identified an unexpected role for histone deacetylation in this process. Significantly, the histone deacetylase (HDAC) Rpd3 was necessary for boundary formation in Saccharomyces cerevisiae. rpd3Δ led to silent information regulator (SIR) spreading and repression of subtelomeric genes. In the absence of a known boundary factor, the histone acetyltransferase complex SAS-I, rpd3Δ caused inappropriate SIR spreading that was lethal to yeast cells. Notably, Rpd3 was capable of creating a boundary when targeted to heterochromatin. Our data suggest a mechanism for boundary formation whereby histone deacetylation by Rpd3 removes the substrate for the HDAC Sir2, so that Sir2 no longer can produce O-acetyl-ADP ribose (OAADPR) by consumption of NAD+ in the deacetylation reaction. In essence, OAADPR therefore is unavailable for binding to Sir3, preventing SIR propagation.


Molecular and Cellular Biology | 2004

Dependence of ORC Silencing Function on NatA-Mediated Nα Acetylation in Saccharomyces cerevisiae

Antje Geissenhöner; Christoph Weise; Ann E. Ehrenhofer-Murray

ABSTRACT Nα acetylation is one of the most abundant protein modifications in eukaryotes and is catalyzed by N-terminal acetyltransferases (NATs). NatA, the major NAT in Saccharomyces cerevisiae, consists of the subunits Nat1p, Ard1p, and Nat5p and is necessary for the assembly of repressive chromatin structures. Here, we found that Orc1p, the large subunit of the origin recognition complex (ORC), required NatA acetylation for its role in telomeric silencing. NatA functioned genetically through the ORC binding site of the HMR-E silencer. Furthermore, tethering Orc1p directly to the silencer circumvented the requirement for NatA in silencing. Orc1p was Nα acetylated in vivo by NatA. Mutations that abrogated its ability to be acetylated caused strong telomeric derepression. Thus, Nα acetylation of Orc1p represents a protein modification that modulates chromatin function in S. cerevisiae. Genetic evidence further supported a functional link between NatA and ORC: (i) nat1Δ was synthetically lethal with orc2-1 and (ii) the synthetic lethality between nat1Δ and SUM1-1 required the Orc1 N terminus. We also found Sir3p to be acetylated by NatA. In summary, we propose a model by which Nα acetylation is required for the binding of silencing factors to the N terminus of Orc1p and Sir3p to recruit heterochromatic factors and establish repression.


Nucleic Acids Research | 2012

Pmt1, a Dnmt2 homolog in Schizosaccharomyces pombe, mediates tRNA methylation in response to nutrient signaling

Maria Becker; Sara Müller; Wolfgang Nellen; Tomasz P. Jurkowski; Albert Jeltsch; Ann E. Ehrenhofer-Murray

The fission yeast Schizosaccharomyces pombe carries a cytosine 5-methyltransferase homolog of the Dnmt2 family (termed pombe methyltransferase 1, Pmt1), but contains no detectable DNA methylation. Here, we found that Pmt1, like other Dnmt2 homologs, has in vitro methylation activity on cytosine 38 of tRNAAsp and, to a lesser extent, of tRNAGlu, despite the fact that it contains a non-consensus residue in catalytic motif IV as compared with its homologs. In vivo tRNA methylation also required Pmt1. Unexpectedly, however, its in vivo activity showed a strong dependence on the nutritional status of the cell because Pmt1-dependent tRNA methylation was induced in cells grown in the presence of peptone or with glutamate as a nitrogen source. Furthermore, this induction required the serine/threonine kinase Sck2, but not the kinases Sck1, Pka1 or Tor1 and was independent of glucose signaling. Taken together, this work reveals a novel connection between nutrient signaling and tRNA methylation that thus may link tRNA methylation to processes downstream of nutrient signaling like ribosome biogenesis and translation initiation.


Genes & Development | 2011

Structural basis for the role of the Sir3 AAA+ domain in silencing: interaction with Sir4 and unmethylated histone H3K79

Stefan Ehrentraut; Markus Hassler; Mariano Oppikofer; Stephanie Kueng; Jan M. Weber; Jonathan W. Mueller; Susan M. Gasser; Andreas G. Ladurner; Ann E. Ehrenhofer-Murray

The silent information regulator 2/3/4 (Sir2/3/4) complex is required for gene silencing at the silent mating-type loci and at telomeres in Saccharomyces cerevisiae. Sir3 is closely related to the origin recognition complex 1 subunit and consists of an N-terminal bromo-adjacent homology (BAH) domain and a C-terminal AAA(+) ATPase-like domain. Here, through a combination of structure biology and exhaustive mutagenesis, we identified unusual, silencing-specific features of the AAA(+) domain of Sir3. Structural analysis of the putative nucleotide-binding pocket in this domain reveals a shallow groove that would preclude nucleotide binding. Mutation of this site has little effect on Sir3 function in vivo. In contrast, several surface regions are shown to be necessary for the Sir3 silencing function. Interestingly, the Sir3 AAA(+) domain is shown here to bind chromatin in vitro in a manner sensitive to histone H3K79 methylation. Moreover, an exposed loop on the surface of this Sir3 domain is found to interact with Sir4. In summary, the unique folding of this conserved Sir3 AAA(+) domain generates novel surface regions that mediate Sir3-Sir4 and Sir3-nucleosome interactions, both being required for the proper assembly of heterochromatin in living cells.


Journal of Cell Science | 2008

Hypermethylation of yeast telomerase RNA by the snRNA and snoRNA methyltransferase Tgs1.

Jacqueline Franke; Jessica Gehlen; Ann E. Ehrenhofer-Murray

Telomerase in Saccharomyces cerevisiae consists of three protein subunits and the RNA moiety TLC1, which together ensure the complete replication of chromosome ends. TLC1 shares several features with snRNA, among them the presence of a trimethylguanosine (m3G) cap structure at the 5′ end of the RNA. Here, we report that the yeast snRNA and snoRNA methyltransferase Tgs1 is responsible for TLC1 m3G cap formation. The absence of Tgs1 caused changes in telomere length and structure, improved telomeric silencing and stabilized telomeric recombination. Genetic analyses implicated a role for the TLC1 m3G cap in the coordination between telomerase and DNA polymerase for end replication. Furthermore, tgs1Δ cells displayed a shortened replicative lifespan, suggesting that the loss of the m3G cap of TLC1 causes premature aging.


BMC Molecular Biology | 2008

Control of replication initiation by the Sum1/Rfm1/Hst1 histone deacetylase

Jan M. Weber; Horst Irlbacher; Ann E. Ehrenhofer-Murray

BackgroundReplication initiation at origins of replication in the yeast genome takes place on chromatin as a template, raising the question how histone modifications, for instance histone acetylation, influence origin firing. Initiation requires binding of the replication initiator, the Origin Recognition Complex (ORC), to a consensus sequence within origins. In addition, other proteins bind to recognition sites in the vicinity of ORC and support initiation. In previous work, we identified Sum1 as an origin-binding protein that contributes to efficient replication initiation. Sum1 is part of the Sum1/Rfm1/Hst1 complex that represses meiotic genes during vegetative growth via histone deacetylation by the histone deacetylase (HDAC) Hst1.ResultsIn this study, we investigated how Sum1 affected replication initiation. We found that it functioned in initiation as a component of the Sum1/Rfm1/Hst1 complex, implying a role for histone deacetylation in origin activity. We identified several origins in the yeast genome whose activity depended on both Sum1 and Hst1. Importantly, sum1 Δ or hst1 Δ caused a significant increase in histone H4 lysine 5 (H4 K5) acetylation levels, but not other H4 acetylation sites, at those origins. Furthermore, mutation of lysines to glutamines in the H4 tail, which imitates the constantly acetylated state, resulted in a reduction of origin activity comparable to that in the absence of Hst1, showing that deacetylation of H4 was important for full initiation capacity of these origins.ConclusionTaken together, our results demonstrate a role for histone deacetylation in origin activity and reveal a novel aspect of origin regulation by chromatin. These results suggest recruitment of the Sum1/Rfm1/Hst1 complex to a number of yeast origins, where Hst1 deacetylated H4 K5.

Collaboration


Dive into the Ann E. Ehrenhofer-Murray's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Franziska Heise

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Jacqueline Franke

HTW Berlin - University of Applied Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anke Samel

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Frank Lyko

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge