Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ann H. Klopp is active.

Publication


Featured researches published by Ann H. Klopp.


PLOS ONE | 2009

Mesenchymal Stem Cell Transition to Tumor-Associated Fibroblasts Contributes to Fibrovascular Network Expansion and Tumor Progression

Erika L. Spaeth; Jennifer Dembinski; A. Kate Sasser; Keri Watson; Ann H. Klopp; Brett Hall; Michael Andreeff; Frank C. Marini

Background Tumor associated fibroblasts (TAF), are essential for tumor progression providing both a functional and structural supportive environment. TAF, known as activated fibroblasts, have an established biological impact on tumorigenesis as matrix synthesizing or matrix degrading cells, contractile cells, and even blood vessel associated cells. The production of growth factors, cytokines, chemokines, matrix-degrading enzymes, and immunomodulatory mechanisms by these cells augment tumor progression by providing a suitable environment. There are several suggested origins of the TAF including tissue-resident, circulating, and epithelial-to-mesenchymal-transitioned cells. Methodology/Principal Findings We provide evidence that TAF are derived from mesenchymal stem cells (MSC) that acquire a TAF phenotype following exposure to or systemic recruitment into adenocarcinoma xenograft models including breast, pancreatic, and ovarian. We define the MSC derived TAF in a xenograft ovarian carcinoma model by the immunohistochemical presence of 1) fibroblast specific protein and fibroblast activated protein; 2) markers phenotypically associated with aggressiveness, including tenascin-c, thrombospondin-1, and stromelysin-1; 3) production of pro-tumorigenic growth factors including hepatocyte growth factor, epidermal growth factor, and interleukin-6; and 4) factors indicative of vascularization, including alpha-smooth muscle actin, desmin, and vascular endothelial growth factor. We demonstrate that under long-term tumor conditioning in vitro, MSC express TAF–like proteins. Additionally, human MSC but not murine MSC stimulated tumor growth primarily through the paracrine production of secreted IL6. Conclusions/Significance Our results suggest the dependence of in vitro Skov-3 tumor cell proliferation is due to the presence of tumor-stimulated MSC secreted IL6. The subsequent TAF phenotype arises from the MSC which ultimately promotes tumor growth through the contribution of microvascularization, stromal networks, and the production of tumor-stimulating paracrine factors.


Gene Therapy | 2008

Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells.

Erika L. Spaeth; Ann H. Klopp; Jennifer Dembinski; Michael Andreeff; Frank C. Marini

Mesenchymal stem cells (MSC) exhibit tropism for sites of tissue damage as well as the tumor microenvironment. Many of the same inflammatory mediators that are secreted by wounds are found in the tumor microenvironment and are thought to be involved in attracting MSC to these sites. Cell migration is dependent on a multitude of signals ranging from growth factors to chemokines secreted by injured cells and/or respondent immune cells. MSC are likely to have chemotactic properties similar to other immune cells that respond to injury and sites of inflammation. Thus, the well-described model of leukocyte migration can serve as a reasonable example to facilitate the identification of factors involved in MSC migration.Understanding the factors involved in regulating MSC migration to tumors is essential to ultimately develop novel clinical strategies aimed at using MSC as vehicles to deliver antitumor proteins or suppress MSC migration to reduce tumor growth. For example, radiation enhances inflammatory signaling in the tumor microenvironment and may be used to potentiate site-specific MSC migration. Alternatively, restricting the migration of the MSC to the tumor microenvironment may prevent competent tumor-stroma formation, thereby hindering the growth of the tumor. In this review, we will discuss the role of inflammatory signaling in attracting MSC to tumors.


Stem Cells | 2009

Direct Evidence of Mesenchymal Stem Cell Tropism for Tumor and Wounding Microenvironments Using In Vivo Bioluminescent Imaging

Shannon Kidd; Erika L. Spaeth; Jennifer Dembinski; Martin Dietrich; Keri Watson; Ann H. Klopp; Venkata Lokesh Battula; Micheal Weil; Michael Andreeff; Frank C. Marini

Multipotent mesenchymal stromal/stem cells (MSC) have shown potential clinical utility. However, previous assessments of MSC behavior in recipients have relied on visual detection in host tissue following sacrifice, failing to monitor in vivo MSC dispersion in a single animal and limiting the number of variables that can be observed concurrently. In this study, we used noninvasive, in vivo bioluminescent imaging to determine conditions under which MSC selectively engraft in sites of inflammation. MSC modified to express firefly luciferase (ffLuc‐MSC) were injected into healthy mice or mice bearing inflammatory insults, and MSC localization was followed with bioluminescent imaging. The inflammatory insults investigated included cutaneous needle‐stick and surgical incision wounds, as well as xenogeneic and syngeneic tumors. We also compared tumor models in which MSC were i.v. or i.p. delivered. Our results demonstrate that ffLuc‐expressing human MSC (hMSC) systemically delivered to nontumor‐bearing animals initially reside in the lungs, then egress to the liver and spleen, and decrease in signal over time. However, hMSC in wounded mice engraft and remain detectable only at injured sites. Similarly, in syngeneic and xenogeneic breast carcinoma‐bearing mice, bioluminescent detection of systemically delivered MSC revealed persistent, specific colocalization with sites of tumor development. This pattern of tropism was also observed in an ovarian tumor model in which MSC were i.p. injected. In this study, we identified conditions under which MSC tropism and selective engraftment in sites of inflammation can be monitored by bioluminescent imaging over time. Importantly, these consistent findings were independent of tumor type, immunocompetence, and route of MSC delivery. STEM CELLS 2009;27:2614–2623


Stem Cells | 2011

Concise Review: Dissecting a Discrepancy in the Literature: Do Mesenchymal Stem Cells Support or Suppress Tumor Growth?

Ann H. Klopp; Anshul Gupta; Erika L. Spaeth; Michael Andreeff; Frank C. Marini

The discovery that mesenchymal stem cells (MSCs) are recruited into tumors has led to a great deal of interest over the past decade in the function of MSCs in tumors. To address this, investigators have used a variety of tumor models in which MSCs are added exogenously to determine their impact on tumor development. Interestingly, many studies have reported contradicting results, with some investigators finding that MSCs promote tumor growth and others reporting that MSCs inhibit tumor growth. Many mechanisms have been reported to account for these observations, such as chemokine signaling, modulation of apoptosis, vascular support, and immune modulation. In this review, we analyzed the differences in the methodology of the studies reported and found that the timing of MSC introduction into tumors may be a critical element. Understanding the conditions in which MSCs enhance tumor growth and metastasis is crucial, both to safely develop MSCs as a therapeutic tool and to advance our understanding of the role of tumor stroma in carcinogenesis. STEM CELLS 2011;29:11–19


Cancer Research | 2007

Tumor Irradiation Increases the Recruitment of Circulating Mesenchymal Stem Cells into the Tumor Microenvironment

Ann H. Klopp; Erika L. Spaeth; Jennifer Dembinski; Wendy A. Woodward; Anupama Munshi; Raymond E. Meyn; James D. Cox; Michael Andreeff; Frank C. Marini

Mesenchymal stem cells (MSC) migrate to and proliferate within sites of inflammation and tumors as part of the tissue remodeling process. Radiation increases the expression of inflammatory mediators that could enhance the recruitment of MSC into the tumor microenvironment. To investigate this, bilateral murine 4T1 breast carcinomas (expressing renilla luciferase) were irradiated unilaterally (1 or 2 Gy). Twenty-four hours later, 2 x 10(5) MSC-expressing firefly luciferase were injected i.v. Mice were then monitored with bioluminescent imaging for expression of both renilla (tumor) and firefly (MSC) luciferase. Forty-eight hours postirradiation, levels of MSC engraftment were 34% higher in tumors receiving 2 Gy (P = 0.004) than in the contralateral unirradiated limb. Immunohistochemical staining of tumor sections from mice treated unilaterally with 2 Gy revealed higher levels of MSC in the parenchyma of radiated tumors, whereas a higher proportion of MSC remained vasculature-associated in unirradiated tumors. To discern the potential mediators involved in MSC attraction, in vitro migration assays showed a 50% to 80% increase in MSC migration towards conditioned media from 1 to 5 Gy-irradiated 4T1 cells compared with unirradiated 4T1 cells. Irradiated 4T1 cells had increased expression of the cytokines, transforming growth factor-beta1, vascular endothelial growth factor, and platelet-derived growth factor-BB, and this up-regulation was confirmed by immunohistochemistry in tumors irradiated in vivo. Interestingly, the chemokine receptor CCR2 was found to be up-regulated in MSC exposed to irradiated tumor cells and inhibition of CCR2 led to a marked decrease of MSC migration in vitro. In conclusion, clinically relevant low doses of irradiation increase the tropism for and engraftment of MSC in the tumor microenvironment.


PLOS ONE | 2012

Origins of the Tumor Microenvironment: Quantitative Assessment of Adipose-Derived and Bone Marrow–Derived Stroma

Shannon Kidd; Erika L. Spaeth; Keri Watson; Jared K. Burks; Hongbo Lu; Ann H. Klopp; Michael Andreeff; Frank C. Marini

To meet the requirements for rapid tumor growth, a complex array of non-neoplastic cells are recruited to the tumor microenvironment. These cells facilitate tumor development by providing matrices, cytokines, growth factors, as well as vascular networks for nutrient and waste exchange, however their precise origins remain unclear. Through multicolored tissue transplant procedures; we have quantitatively determined the contribution of bone marrow-derived and adipose-derived cells to stromal populations within syngeneic ovarian and breast murine tumors. Our results indicate that subpopulations of tumor-associated fibroblasts (TAFs) are recruited from two distinct sources. The majority of fibroblast specific protein (FSP) positive and fibroblast activation protein (FAP) positive TAFs originate from mesenchymal stem/stromal cells (MSC) located in bone marrow sources, whereas most vascular and fibrovascular stroma (pericytes, α-SMA+ myofibroblasts, and endothelial cells) originates from neighboring adipose tissue. These results highlight the capacity for tumors to utilize multiple sources of structural cells in a systematic and discriminative manner.


PLOS ONE | 2010

Mesenchymal Stem Cells Promote Mammosphere Formation and Decrease E-Cadherin in Normal and Malignant Breast Cells

Ann H. Klopp; Lara Lacerda; Anshul Gupta; Bisrat G. Debeb; Travis Solley; Li Li; Erika L. Spaeth; Wei Xu; Xiaomei Zhang; Michael T. Lewis; James M. Reuben; Savitri Krishnamurthy; Mauro Ferrari; Rogério Gaspar; Thomas A. Buchholz; Massimo Cristofanilli; Frank C. Marini; Michael Andreeff; Wendy A. Woodward

Introduction Normal and malignant breast tissue contains a rare population of multi-potent cells with the capacity to self-renew, referred to as stem cells, or tumor initiating cells (TIC). These cells can be enriched by growth as “mammospheres” in three-dimensional cultures. Objective We tested the hypothesis that human bone-marrow derived mesenchymal stem cells (MSC), which are known to support tumor growth and metastasis, increase mammosphere formation. Results We found that MSC increased human mammary epithelial cell (HMEC) mammosphere formation in a dose-dependent manner. A similar increase in sphere formation was seen in human inflammatory (SUM149) and non-inflammatory breast cancer cell lines (MCF-7) but not in primary inflammatory breast cancer cells (MDA-IBC-3). We determined that increased mammosphere formation can be mediated by secreted factors as MSC conditioned media from MSC spheroids significantly increased HMEC, MCF-7 and SUM149 mammosphere formation by 6.4 to 21-fold. Mammospheres grown in MSC conditioned media had lower levels of the cell adhesion protein, E-cadherin, and increased expression of N-cadherin in SUM149 and HMEC cells, characteristic of a pro-invasive mesenchymal phenotype. Co-injection with MSC in vivo resulted in a reduced latency time to develop detectable MCF-7 and MDA-IBC-3 tumors and increased the growth of MDA-IBC-3 tumors. Furthermore, E-cadherin expression was decreased in MDA-IBC-3 xenografts with co-injection of MSC. Conclusions MSC increase the efficiency of primary mammosphere formation in normal and malignant breast cells and decrease E-cadherin expression, a biologic event associated with breast cancer progression and resistance to therapy.


Cytotherapy | 2008

The (in) auspicious role of mesenchymal stromal cells in cancer: be it friend or foe

Shannon Kidd; Erika L. Spaeth; Ann H. Klopp; Michael Andreeff; Brett Hall; Frank C. Marini

Recent progress in the research of mesenchymal stromal cells/multipotent stromal cells (MSC) has revealed numerous beneficial innate characteristics, suggesting potential value in an array of cellular therapies. MSC are easily isolated from bone marrow (BM), fat and other tissues, and are readily propagated in vitro. Transplanted/injected MSC have been shown to migrate to a variety of organs and tissues; however, sites of inflammation and pathology elicit enhanced MSC homing for tissue remodeling and repair. Tumors utilize many of the same inflammatory mediators uncovered in wound healing and likewise provide a site for preferential MSC homing. Although incorporation into the tumor microenvironment is apparent, the role of recruited MSC in the tumor microenvironment remains unclear. Some published studies have shown enhancement of tumor growth and development, perhaps through immunomodulatory and pro-angiogenic properties, while others have shown no apparent effect or have demonstrated inhibition of tumor growth and extended survival. This controversy remains at the forefront as clinical applications of MSC commence in anti-tumor therapies as well as as adjuncts to stem cell transplantation and in ameliorating graft-versus-host disease. Careful analysis of past studies and thoughtful design of future experiments will help to resolve the discrepancies in the field and lead to clinical utility of MSC in disease treatment. This review highlights the current theories of the role of MSC in tumors and explores current controversies.


Clinical Cancer Research | 2012

Omental adipose tissue-derived stromal cells promote vascularization and growth of endometrial tumors.

Ann H. Klopp; Yan Zhang; Travis Solley; Felipe Amaya-Manzanares; Frank C. Marini; Michael Andreeff; Bisrat G. Debeb; Wendy A. Woodward; Rosemarie Schmandt; Russell Broaddus; Karen H. Lu; Mikhail G. Kolonin

Purpose: Adipose tissue contains a population of tumor-tropic mesenchymal progenitors, termed adipose stromal cells (ASC), which engraft in neighboring tumors to form supportive tumor stroma. We hypothesized that intra-abdominal visceral adipose tissue may contain a uniquely tumor-promoting population of ASC to account for the relationship between excess visceral adipose tissue and mortality of intra-abdominal cancers. Experimental Design: To investigate this, we isolated and characterized ASC from intra-abdominal omental adipose tissue (O-ASC) and characterized their effects on endometrial cancer progression as compared with subcutaneous adipose-derived mesenchymal stromal cells (SC-ASC), bone marrow–derived mesenchymal stromal cells (BM-MSC), and lung fibroblasts. To model chronic recruitment of ASC by tumors, cells were injected metronomically into mice bearing Hec1a xenografts. Results: O-ASC expressed cell surface markers characteristic of BM-MSC and differentiated into mesenchymal lineages. Coculture with O-ASC increased endometrial cancer cell proliferation in vitro. Tumor tropism of O-ASC and SC-ASC for human Hec1a endometrial tumor xenografts was comparable, but O-ASC more potently promoted tumor growth. Compared with tumors in SC-ASC–injected mice, tumors in O-ASC–injected mice contained higher numbers of large tortuous desmin-positive blood vessels, which correlated with decreased central tumor necrosis and increased tumor cell proliferation. O-ASC exhibited enhanced motility as compared with SC-ASC in response to Hec1a-secreted factors. Conclusions: Visceral adipose tissue contains a population of multipotent MSCs that promote endometrial tumor growth more potently than MSCs from subcutaneous adipose tissue. We propose that O-ASCs recruited to tumors express specific factors that enhance tumor vascularization, promoting survival and proliferation of tumor cells. Clin Cancer Res; 18(3); 771–82. ©2011 AACR.


International Journal of Radiation Oncology Biology Physics | 2013

Hematologic Toxicity in RTOG 0418: A Phase 2 Study of Postoperative IMRT for Gynecologic Cancer

Ann H. Klopp; Jennifer Moughan; L. Portelance; Brigitte Miller; Mohammad Salehpour; Evangeline Hildebrandt; Jenny Nuanjing; David D'Souza; Luis Souhami; William Small; Rakesh Gaur; Anuja Jhingran

PURPOSE Intensity modulated radiation therapy (IMRT), compared with conventional 4-field treatment, can reduce the volume of bone marrow irradiated. Pelvic bone marrow sparing has produced a clinically significant reduction in hematologic toxicity (HT). This analysis investigated HT in Radiation Therapy Oncology Group (RTOG) 0418, a prospective study to test the feasibility of delivering postoperative IMRT for cervical and endometrial cancer in a multiinstitutional setting. METHODS AND MATERIALS Patients in the RTOG 0418 study were treated with postoperative IMRT to 50.4 Gy to the pelvic lymphatics and vagina. Endometrial cancer patients received IMRT alone, whereas patients with cervical cancer received IMRT and weekly cisplatin (40 mg/m(2)). Pelvic bone marrow was defined within the treatment field by using a computed tomography density-based autocontouring algorithm. The volume of bone marrow receiving 10, 20, 30, and 40 Gy and the median dose to bone marrow were correlated with HT, graded by Common Terminology Criteria for Adverse Events, version 3.0, criteria. RESULTS Eighty-three patients were eligible for analysis (43 with endometrial cancer and 40 with cervical cancer). Patients with cervical cancer treated with weekly cisplatin and pelvic IMRT had grades 1-5 HT (23%, 33%, 25%, 0%, and 0% of patients, respectively). Among patients with cervical cancer, 83% received 5 or more cycles of cisplatin, and 90% received at least 4 cycles of cisplatin. The median percentage volume of bone marrow receiving 10, 20, 30, and 40 Gy in all 83 patients, respectively, was 96%, 84%, 61%, and 37%. Among cervical cancer patients with a V40 >37%, 75% had grade 2 or higher HT compared with 40% of patients with a V40 less than or equal to 37% (P =.025). Cervical cancer patients with a median bone marrow dose of >34.2 Gy also had higher rates of grade ≥ 2 HT than did those with a dose of ≤ 34.2 Gy (74% vs 43%, P=.049). CONCLUSIONS Pelvic IMRT with weekly cisplatin is associated with low rates of HT and high rates of weekly cisplatin use. The volume of bone marrow receiving 40 Gy and the median dose to bone marrow correlated with higher rates of grade ≥ 2 toxicity among patients receiving weekly cisplatin (cervical cancer patients). Evaluation and limitation of the volume of bone marrow treated with pelvic IMRT is warranted in patients receiving concurrent chemotherapy.

Collaboration


Dive into the Ann H. Klopp's collaboration.

Top Co-Authors

Avatar

Patricia J. Eifel

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Anuja Jhingran

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Karen H. Lu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Michael Frumovitz

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Travis Solley

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Wendy A. Woodward

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Michael Andreeff

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Shannon N. Westin

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Kathleen M. Schmeler

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge