Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ann L. Miller is active.

Publication


Featured researches published by Ann L. Miller.


Nature Cell Biology | 2009

Regulation of cytokinesis by Rho GTPase flux

Ann L. Miller; William M. Bement

In animal cells, cytokinesis is powered by a contractile ring of actin filaments (F-actin) and myosin-2. Formation of the contractile ring is dependent on the small GTPase RhoA, which is activated in a precise zone at the cell equator. It has long been assumed that cytokinesis and other Rho-dependent processes are controlled in a sequential manner, whereby Rho activation by guanine nucleotide exchange factors (GEFs) initiates a particular event, and Rho inactivation by GTPase activating proteins (GAPs) terminates that event. MgcRacGAP is a conserved cytokinesis regulator thought to be required only at the end of cytokinesis. Here we show that GAP activity of MgcRacGAP is necessary early during cytokinesis for the formation and maintenance of the Rho activity zone. Disruption of GAP activity by point mutation results in poorly focused Rho activity zones, whereas complete removal of the GAP domain results in unfocused zones that show lateral instability and/or rapid side-to-side oscillations. We propose that the GAP domain of MgcRacGAP has two unexpected roles throughout cytokinesis: first, it transiently anchors active Rho, and second, it promotes local Rho inactivation, resulting in the constant flux of Rho through the GTPase cycle.


Proceedings of the National Academy of Sciences of the United States of America | 2001

The Abl-related gene (Arg) nonreceptor tyrosine kinase uses two F-actin-binding domains to bundle F-actin.

Yinxiang Wang; Ann L. Miller; Mark S. Mooseker; Anthony J. Koleske

Abl family nonreceptor tyrosine kinases regulate cellular morphogenesis and motility through functional interactions with the actin cytoskeleton. Although Abl family kinases are known to contain filamentous (F)-actin-binding domains at their C termini, it is unclear how Abl family kinases regulate the structure and/or function of the actin cytoskeleton. We show here that the Abl-related kinase Arg binds with positive cooperativity to F-actin in vitro with binding saturating at a ratio of one Arg/two actin molecules. Measurements of the F-actin-binding properties of Arg deletion mutants led to the identification of a second, previously uncharacterized internal F-actin-binding domain in Arg. Purified Arg can bundle F-actin in vitro, and this bundling activity requires both F-actin-binding domains. An Arg-yellow fluorescent protein fusion protein can induce the formation of actin-rich structures at the lamellipodia of Swiss 3T3 fibroblasts. Both of Args F-actin-binding domains are necessary and sufficient for the formation of these actin-rich structures. Together, our data suggest that Arg can use its F-actin-bundling activity to directly regulate actin cytoskeletal structure in vivo.


Journal of Cell Biology | 2004

The Abl-related gene (Arg) requires its F-actin-microtubule cross-linking activity to regulate lamellipodial dynamics during fibroblast adhesion.

Ann L. Miller; Yinxiang Wang; Mark S. Mooseker; Anthony J. Koleske

Microtubules (MTs) help establish and maintain cell polarity by promoting actin-dependent membrane protrusion at the leading edge of the cell, but the molecular mechanisms that mediate cross-talk between actin and MTs during this process are unclear. We demonstrate that the Abl-related gene (Arg) nonreceptor tyrosine kinase is required for dynamic lamellipodial protrusions after adhesion to fibronectin. arg − / − fibroblasts exhibit reduced lamellipodial dynamics as compared with wild-type fibroblasts, and this defect can be rescued by reexpression of an Arg-yellow fluorescent protein fusion. We show that Arg can bind MTs with high affinity and cross-link filamentous actin (F-actin) bundles and MTs in vitro. MTs concentrate and insert into Arg-induced F-actin–rich cell protrusions. Arg requires both its F-actin–binding domains and its MT-binding domain to rescue the defects in lamellipodial dynamics of arg − / − fibroblasts. These findings demonstrate that Arg can mediate physical contact between F-actin and MTs at the cell periphery and that this cross-linking activity is required for Arg to regulate lamellipodial dynamics in fibroblasts.


Current Biology | 2009

Integration of Single and Multicellular Wound Responses

Andrew G. Clark; Ann L. Miller; Emily M. Vaughan; Hoi Ying E Yu; Rhiannon R. Penkert; William M. Bement

Single cells and multicellular tissues rapidly heal wounds. These processes are considered distinct, but one mode of healing--Rho GTPase-dependent formation and closure of a purse string of actin filaments (F-actin) and myosin-2 around wounds--occurs in single cells and in epithelia. Here, we show that wounding of one cell in Xenopus embryos elicits Rho GTPase activation around the wound and at the nearest cell-cell junctions in the neighbor cells. F-actin and myosin-2 accumulate at the junctions and around the wound itself, and as the resultant actomyosin array closes over the wound site, junctional F-actin and myosin-2 become mechanically integrated with the actin and myosin-2 around the wound, forming a hybrid purse string. When cells are ablated rather than wounded, Rho GTPase activation and F-actin accumulation occur at cell-cell junctions surrounding the ablated cell, and the purse string closes the hole in the epithelium. Elevation of intracellular free calcium, an essential upstream signal for the single-cell wound response, also occurs at the cell-cell contacts and in neighbor cells. Thus, the single and multicellular purse string wound responses represent points on a signaling and mechanical continuum that are integrated by cell-cell junctions.


Journal of Cell Biology | 2009

Action at a distance during cytokinesis

George von Dassow; Koen J. Verbrugghe; Ann L. Miller; Jenny R. Sider; William M. Bement

Astral microtubule contact with the cortex is not required to position the furrow for cytokinesis.


Nature Cell Biology | 2015

Activator-inhibitor coupling between Rho signalling and actin assembly makes the cell cortex an excitable medium

William M. Bement; Marcin Leda; Alison M. Moe; Angela M. Kita; Matthew E. Larson; Adriana E. Golding; Courtney Pfeuti; Kuan Chung Su; Ann L. Miller; Andrew B. Goryachev; George von Dassow

Animal cell cytokinesis results from patterned activation of the small GTPase Rho, which directs assembly of actomyosin in the equatorial cortex. Cytokinesis is restricted to a portion of the cell cycle following anaphase onset in which the cortex is responsive to signals from the spindle. We show that shortly after anaphase onset oocytes and embryonic cells of frogs and echinoderms exhibit cortical waves of Rho activity and F-actin polymerization. The waves are modulated by cyclin-dependent kinase 1 (Cdk1) activity and require the Rho GEF (guanine nucleotide exchange factor), Ect2. Surprisingly, during wave propagation, although Rho activity elicits F-actin assembly, F-actin subsequently inactivates Rho. Experimental and modelling results show that waves represent excitable dynamics of a reaction–diffusion system with Rho as the activator and F-actin the inhibitor. We propose that cortical excitability explains fundamental features of cytokinesis including its cell cycle regulation.


Developmental Cell | 2008

Polar Body Emission Requires a RhoA Contractile Ring and Cdc42-Mediated Membrane Protrusion

Xuan Zhang; Chunqi Ma; Ann L. Miller; Hadia Arabi Katbi; William M. Bement; X. Johné Liu

Vertebrate oocyte maturation is an extreme form of asymmetric cell division, producing a mature egg alongside a diminutive polar body. Critical to this process is the attachment of one spindle pole to the oocyte cortex prior to anaphase. We report here that asymmetric spindle pole attachment and anaphase initiation are required for localized cortical activation of Cdc42, which in turn defines the surface of the impending polar body. The Cdc42 activity zone overlaps with dynamic F-actin and is circumscribed by a RhoA-based actomyosin contractile ring. During cytokinesis, constriction of the RhoA contractile ring is accompanied by Cdc42-mediated membrane outpocketing such that one spindle pole and one set of chromosomes are pulled into the Cdc42 enclosure. Unexpectedly, the guanine nucleotide exchange factor Ect2, which is necessary for contractile ring formation, does not colocalize with active RhoA. Polar body emission thus requires a classical RhoA contractile ring and Cdc42-mediated membrane protrusion.


Current Biology | 2011

Control of Local Rho GTPase Crosstalk by Abr

Emily M. Vaughan; Ann L. Miller; Hoi Ying E Yu; William M. Bement

BACKGROUND The Rho GTPases-Rho, Rac, and Cdc42-regulate the dynamics of F-actin (filamentous actin) and myosin-2 with considerable subcellular precision. Consistent with this ability, active Rho and Cdc42 occupy mutually exclusive zones during single-cell wound repair and asymmetric cytokinesis, suggesting the existence of mechanisms for local crosstalk, but how local Rho GTPase crosstalk is controlled is unknown. RESULTS Using a candidate screen approach for Rho GTPase activators (guanine nucleotide exchange factors; GEFs) and Rho GTPase inactivators (GTPase-activating proteins; GAPs), we find that Abr, a protein with both GEF and GAP activity, regulates Rho and Cdc42 during single-cell wound repair. Abr is targeted to the Rho activity zone via active Rho. Within the Rho zone, Abr promotes local Rho activation via its GEF domain and controls local crosstalk via its GAP domain, which limits Cdc42 activity within the Rho zone. Depletion of Abr attenuates Rho activity and wound repair. CONCLUSIONS Abr is the first identified Rho GTPase regulator of single-cell wound healing. Its novel mode of targeting by interaction with active Rho allows Abr to rapidly amplify local increases in Rho activity using its GEF domain while its ability to inactivate Cdc42 using its GAP domain results in sharp segregation of the Rho and Cdc42 zones. Similar mechanisms of local Rho GTPase activation and segregation enforcement may be employed in other processes that exhibit local Rho GTPase crosstalk.


Current Biology | 2016

Maintenance of the Epithelial Barrier and Remodeling of Cell-Cell Junctions during Cytokinesis

Tomohito Higashi; Torey R. Arnold; Rachel E. Stephenson; Kayla M. Dinshaw; Ann L. Miller

Epithelial integrity and barrier function must be maintained during the complex cell shape changes that occur during cytokinesis in vertebrate epithelial tissue. Here, we investigate how adherens junctions and bicellular and tricellular tight junctions are maintained and remodeled during cell division in the Xenopus laevis embryo. We find that epithelial barrier function is not disrupted during cytokinesis and is mediated by sustained tight junctions. Using fluorescence recovery after photobleaching (FRAP), we demonstrate that adherens junction proteins are stabilized at the cleavage furrow by increased tension. We find that Vinculin is recruited to the adherens junction at the cleavage furrow, and that inhibiting recruitment of Vinculin by expressing a dominant-negative mutant increases the rate of furrow ingression. Furthermore, we show that cells neighboring the cleavage plane are pulled between the daughter cells, making a new interface between neighbors, and two new tricellular tight junctions flank the midbody following cytokinesis. Our data provide new insight into how epithelial integrity and barrier function are maintained throughout cytokinesis in vertebrate epithelial tissue.


Molecular Biology of the Cell | 2015

MgcRacGAP restricts active RhoA at the cytokinetic furrow and both RhoA and Rac1 at cell-cell junctions in epithelial cells.

Elaina B. Breznau; Ansley C. Semack; Tomohito Higashi; Ann L. Miller

MgcRacGAPs role in regulating the spatiotemporal dynamics of active RhoA and Rac1 in epithelial cells is investigated. MgcRacGAPs GAP activity down-regulates RhoA at the furrow and both RhoA and Rac1 at cell–cell junctions in dividing epithelial cells and is required for successful cytokinesis and cell–cell junction structure. MgcRacGAPs ability to regulate adherens junctions is dependent on GAP activity and signaling via the RhoA pathway.

Collaboration


Dive into the Ann L. Miller's collaboration.

Top Co-Authors

Avatar

William M. Bement

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Emily M. Vaughan

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ellyn Gray

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Hoi Ying E Yu

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge