Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ann L. T. Powell is active.

Publication


Featured researches published by Ann L. T. Powell.


Molecular Plant-microbe Interactions | 2000

Transgenic expression of pear PGIP in tomato limits fungal colonization.

Ann L. T. Powell; Jan A. L. van Kan; Arjen ten Have; Jaap Visser; L. Carl Greve; Alan B. Bennett; John M. Labavitch

Transgenic tomato plants expressing the pear fruit polygalacturonase inhibitor protein (pPGIP) were used to demonstrate that this inhibitor of fungal pathogen endopolygalacturonases (endo-PGs) influences disease development. Transgenic expression of pPGIP resulted in abundant accumulation of the heterologous protein in all tissues and did not alter the expression of an endogenous tomato fruit PGIP (tPGIP). The pPGIP protein was detected, as expected, in the cell wall protein fraction in all transgenic tissues. Despite differential glycosylation in vegetative and fruit tissues, the expressed pPGIP was active in both tissues as an inhibitor of endo-PGs from Botrytis cinerea. The growth of B. cinerea on ripe tomato fruit expressing pPGIP was reduced, and tissue breakdown was diminished by as much as 15%, compared with nontransgenic fruit In transgenic leaves, the expression of pPGIP reduced lesions of macerated tissue approximately 25%, a reduction of symptoms of fungal growth similar to that observed with a B. cinerea strain in which a single endo-PG gene, Bcpg1, had been deleted (A. ten Have, W. Mulder, J. Visser, and J. A. L. van Kan, Mol. Plant-Microbe Interact. 11:1009-1016, 1998). Heterologous expression of pPGIP has demonstrated that PGIP inhibition of fungal PGs slows the expansion of disease lesions and the associated tissue maceration.


Science | 2012

Uniform ripening Encodes a Golden 2-like Transcription Factor Regulating Tomato Fruit Chloroplast Development

Ann L. T. Powell; Cuong V. Nguyen; Theresa Hill; KaLai Lam Cheng; Rosa Figueroa-Balderas; Hakan Aktas; Hamid Ashrafi; Clara Pons; Rafael Fernández-Muñoz; Ariel R. Vicente; Javier Lopez-Baltazar; Cornelius S. Barry; Yongsheng Liu; Roger T. Chetelat; Antonio Granell; Allen Van Deynze; James J. Giovannoni; Alan B. Bennett

Pretty or Sweet The grocery-store tomato that looks beautiful but tastes like tart cardboard arises from selection processes favoring phenotypes that make commercial production more reliable. Significant in that selection process was a mutation that reduced the mottled color variations of unripe green tomatoes, leaving them a uniform, pale, green. Powell et al. (p. 1711) analyzed the molecular biology of the mutation. The uniform ripening mutation turns out to disable a transcription factor called Golden 2-like (GLK2). GLK2 expression increases the fruits photosynthetic capacity, resulting in higher sugar content. Controlling when tomatoes turn from green to red requires knocking out the gene that adds flavor. Modern tomato (Solanum lycopersicum) varieties are bred for uniform ripening (u) light green fruit phenotypes to facilitate harvests of evenly ripened fruit. U encodes a Golden 2-like (GLK) transcription factor, SlGLK2, which determines chlorophyll accumulation and distribution in developing fruit. In tomato, two GLKs—SlGLK1 and SlGLK2—are expressed in leaves, but only SlGLK2 is expressed in fruit. Expressing GLKs increased the chlorophyll content of fruit, whereas SlGLK2 suppression recapitulated the u mutant phenotype. GLK overexpression enhanced fruit photosynthesis gene expression and chloroplast development, leading to elevated carbohydrates and carotenoids in ripe fruit. SlGLK2 influences photosynthesis in developing fruit, contributing to mature fruit characteristics and suggesting that selection of u inadvertently compromised ripe fruit quality in exchange for desirable production traits.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The intersection between cell wall disassembly, ripening, and fruit susceptibility to Botrytis cinerea

Dario Cantu; Ariel R. Vicente; L. C. Greve; F. M. Dewey; Alan B. Bennett; John M. Labavitch; Ann L. T. Powell

Fruit ripening is characterized by processes that modify texture and flavor but also by a dramatic increase in susceptibility to necrotrophic pathogens, such as Botrytis cinerea. Disassembly of the major structural polysaccharides of the cell wall (CW) is a significant process associated with ripening and contributes to fruit softening. In tomato, polygalacturonase (PG) and expansin (Exp) are among the CW proteins that cooperatively participate in ripening-associated CW disassembly. To determine whether endogenous CW disassembly influences the ripening-regulated increase in necrotropic pathogen susceptibility, B. cinerea susceptibility was assessed in transgenic fruit with suppressed polygalacturonase (LePG) and expansin (LeExp1) expression. Suppression of either LePG or LeExp1 alone did not reduce susceptibility but simultaneous suppression of both dramatically reduced the susceptibility of ripening fruit to B. cinerea, as measured by fungal biomass accumulation and by macerating lesion development. These results demonstrate that altering endogenous plant CW disassembly during ripening influences the course of infection by B. cinerea, perhaps by changing the structure or the accessibility of CW substrates to pathogen CW-degrading enzymes. Recognition of the role of ripening-associated CW metabolism in postharvest pathogen susceptibility may be useful in the design and development of strategies to limit pathogen losses during fruit storage, handling, and distribution.


Trends in Plant Science | 2008

Strangers in the matrix: plant cell walls and pathogen susceptibility

Dario Cantu; Ariel R. Vicente; John M. Labavitch; Alan B. Bennett; Ann L. T. Powell

Early in infection, pathogens encounter the outer wall of plant cells. Because pathogen hydrolases targeting the plant cell wall are well-known components of virulence, it has been assumed that wall disassembly by the plant itself also contributes to susceptibility, and now this has been established experimentally. Understanding how plant morphological and developmental remodeling and pathogen cell wall targeted virulence influence infections provides new perspectives about plant-pathogen interactions. The plant cell wall can be an effective physical barrier to pathogens, but also it is a matrix where many proteins involved in pathogen perception are delivered. By breaching the wall, a pathogen potentially reveals itself to the plant and activates responses, setting off events that might halt or limit its advance.


Molecular Genetics and Genomics | 1984

Changes in T-DNA methylation and expression are associated with phenotypic variation and plant regeneration in a crown gall tumor line.

Richard M. Amasino; Ann L. T. Powell; Milton P. Gordon

SummaryPhenotypic variation of an octopine-type crown gall tumor line resulting from changes in the pattern of T-DNA methylation and expression is described. Variants that grow as unorganized callus always express T-DNA transcripts 1 and 2. In shoot-forming variants (teratomas) only T-DNA transcript 4 is expressed. This line also regenerates normal-appearing, rooted plants in which all T-DNA expression is suppressed. Tissues from these plants require phytohormones for growth in vitro. These plants are selffertile and transmit T-DNA through meiosis, and T-DNA suppression is maintained in the next generation. After treatment of regenerated plant tissue with 5-azacytidine, an inhibitor of DNA methylation, T-DNA transcription and phytohormone-independent tumorous growth resume. The T-DNA of cell lines in which T-DNA is not expressed is highly methylated, whereas the level of T-DNA methylation is reduced in 5-azacytidine treated cells that resume T-DNA expression and phytohormone-independent growth. The correlation between the degree of T-DNA methylation and the level of T-DNA expression indicates that hypermethylation is responsible for the suppression of T-DNA transcription.


Theoretical and Applied Genetics | 2005

QTL ANALYSIS OF FRUIT ANTIOXIDANTS IN TOMATO USING LYCOPERSICON PENNELLII INTROGRESSION LINES

M. Cecilia Rousseaux; Carl M. Jones; Dawn Adams; Roger T. Chetelat; Alan B. Bennett; Ann L. T. Powell

Antioxidants present in fruits and vegetables may help prevent some chronic diseases such as cancer, arthritis, and heart disease. Tomatoes provide a major contribution to human dietary nutrition because of their widespread consumption in fresh and processed forms. A tomato introgression line population that combines single chromosomal segments introgressed from the wild, green fruited species Lycopersicon pennellii in the background of the domesticated tomato, Lycopersicon esculentum, was used to identify quantitative trait loci (QTL) for nutritional and antioxidant contents. The concentration of ascorbic acid, total phenolics, lycopene and β-carotene, and the total antioxidant capacity of the water-soluble fraction (TACW) were measured in the ripe fruits. A total of 20 QTL were identified, including five for TACW (ao), six for ascorbic acid (aa), and nine for total phenolics (phe). Some of these QTL (ao6-2, ao6-3, ao7-2, ao10-1, aa12-4, phe6-2, and phe7-4) increased levels as compared to the parental line L. esculentum. For lycopene content, we detected four QTL, but none increased levels relative to L. esculentum. The two QTL (bc6-2 and bc6-3) detected for β-carotene increased its levels. The traits studied displayed a strong environmental interaction as only 35% of the water-soluble antioxidant QTL (including TACW, ascorbic, and phenolic contents) were consistent over at least two seasons. Also, only two QTL for phenolics were observed when plants were grown in the greenhouse and none was detected for ascorbic or TACW. The analysis demonstrates that the introgression of wild germplasm may improve the nutritional quality of tomatoes; however regulation appears to be complex with strong environmental effects.


Plant Molecular Biology | 1994

Structure and expression of an inhibitor of fungal polygalacturonases from tomato

Henrik U. Stotz; James J. A. Contos; Ann L. T. Powell; Alan B. Bennett; John M. Labavitch

A polygalacturonase inhibitor protein (PGIP) was characterized from tomato fruit. Differential glycosylation of a single polypeptide accounted for heterogeneity in concanavalin A binding and in molecular mass. Tomato PGIP had a native molecular mass of 35 to 41 kDa, a native isoelectric point of 9.0, and a chemically deglycosylated molecular mass of 34 kDa, suggesting shared structural similarities with pear fruit PGIP. When purified PGIPs from pear and tomato were compared, tomato PGIP was approximately twenty-fold less effective an inhibitor of polygalacturonase activity isolated from cultures of Botrytis cinerea. Based on partial amino acid sequence, polymerase chain reaction products and genomic clones were isolated and used to demonstrate the presence of PGIP mRNA in both immature and ripening fruit as well as cell suspension cultures. Nucleotide sequence analysis indicates that the gene, uninterrupted by introns, encodes a predicted 36.5 kDa polypeptide containing amino acid sequences determined from the purified protein and sharing 68% and 50% amino acid sequence identity with pear and bean PGIPs, respectively. Analysis of the PGIP sequences also revealed that they belong to a class of proteins which contain leucine-rich tandem repeats. Because these sequence domains have been associated with protein-protein interactions, it is possible that they contribute to the interaction between PGIP and fungal polygalacturonases.


Plant Systematics and Evolution | 2016

A major function of the tobacco floral nectary is defense against microbial attack

Clay J. Carter; Ann L. T. Powell; Ron Mittler; Ludmila Rizhsky; Harry T. Horner

Abstract. We have characterized the major nectar protein (Nectarin I) from ornamental tobacco as a superoxide dismutase that functions to generate high levels of hydrogen peroxide in nectar. Other nectar functions include an anti-polygalacturonase activity that may be due to a polygalacturonase inhibiting protein (PGIP). We also examined the expression of defense related genes in the nectary gland by two independent methods. We isolated a sample of nectary-expressed cDNAs and found that 21% of these cDNAs were defense related clones. Finally, we examined the expression of a number of specific defense-related genes by hybridization to specific cDNAs. These results demonstrated that a number of specific defense genes were more strongly expressed in the floral nectary than in the foliage. Taken together these results indicate that the floral nectary gland can have specific functions in plant defense.


Plant Physiology | 2009

Ripening-Regulated Susceptibility of Tomato Fruit to Botrytis cinerea Requires NOR But Not RIN or Ethylene

Dario Cantu; Barbara Blanco-Ulate; Liya Yang; John M. Labavitch; Alan B. Bennett; Ann L. T. Powell

Fruit ripening is a developmental process that is associated with increased susceptibility to the necrotrophic pathogen Botrytis cinerea. Histochemical observations demonstrate that unripe tomato (Solanum lycopersicum) fruit activate pathogen defense responses, but these responses are attenuated in ripe fruit infected by B. cinerea. Tomato fruit ripening is regulated independently and cooperatively by ethylene and transcription factors, including NON-RIPENING (NOR) and RIPENING-INHIBITOR (RIN). Mutations in NOR or RIN or interference with ethylene perception prevent fruit from ripening and, thereby, would be expected to influence susceptibility. We show, however, that the susceptibility of ripe fruit is dependent on NOR but not on RIN and only partially on ethylene perception, leading to the conclusion that not all of the pathways and events that constitute ripening render fruit susceptible. Additionally, on unripe fruit, B. cinerea induces the expression of genes also expressed as uninfected fruit ripen. Among the ripening-associated genes induced by B. cinerea are LePG (for polygalacturonase) and LeExp1 (for expansin), which encode cell wall-modifying proteins and have been shown to facilitate susceptibility. LePG and LeExp1 are induced only in susceptible rin fruit and not in resistant nor fruit. Thus, to infect fruit, B. cinerea relies on some of the processes and events that occur during ripening, and the fungus induces these pathways in unripe fruit, suggesting that the pathogen itself can initiate the induction of susceptibility by exploiting endogenous developmental programs. These results demonstrate the developmental plasticity of plant responses to the fungus and indicate how known regulators of fruit ripening participate in regulating ripening-associated pathogen susceptibility.


Journal of Proteome Research | 2012

Proteomic Analysis of Ripening Tomato Fruit Infected by Botrytis cinerea

Punit Shah; Ann L. T. Powell; Ron Orlando; Carl Bergmann; Gerardo Gutierrez-Sanchez

Botrytis cinerea, a model necrotrophic fungal pathogen that causes gray mold as it infects different organs on more than 200 plant species, is a significant contributor to postharvest rot in fresh fruit and vegetables, including tomatoes. By describing host and pathogen proteomes simultaneously in infected tissues, the plant proteins that provide resistance and allow susceptibility and the pathogen proteins that promote colonization and facilitate quiescence can be identified. This study characterizes fruit and fungal proteins solubilized in the B. cinerea-tomato interaction using shotgun proteomics. Mature green, red ripe wild type and ripening inhibited (rin) mutant tomato fruit were infected with B. cinerea B05.10, and the fruit and fungal proteomes were identified concurrently 3 days postinfection. One hundred eighty-six tomato proteins were identified in common among red ripe and red ripe-equivalent ripening inhibited (rin) mutant tomato fruit infected by B. cinerea. However, the limited infections by B. cinerea of mature green wild type fruit resulted in 25 and 33% fewer defense-related tomato proteins than in red and rin fruit, respectively. In contrast, the ripening stage of genotype of the fruit infected did not affect the secreted proteomes of B. cinerea. The composition of the collected proteins populations and the putative functions of the identified proteins argue for their role in plant-pathogen interactions.

Collaboration


Dive into the Ann L. T. Powell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dario Cantu

University of California

View shared research outputs
Top Co-Authors

Avatar

L. Carl Greve

University of California

View shared research outputs
Top Co-Authors

Avatar

Ariel R. Vicente

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge