Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ann M. Buysse is active.

Publication


Featured researches published by Ann M. Buysse.


Bioorganic & Medicinal Chemistry | 2016

The discovery of Arylex™ active and Rinskor™ active: Two novel auxin herbicides.

Jeffrey Epp; Anita Lenora Alexander; Terry William Balko; Ann M. Buysse; William Kirkland Brewster; Kristy Bryan; John F. Daeuble; Stephen Craig Fields; Roger E. Gast; Renard Antonio Green; Nicholas Martin Irvine; William C. Lo; Christian T. Lowe; James M. Renga; John Sanders Richburg; James Ruiz; Norbert M. Satchivi; Paul R. Schmitzer; Thomas L. Siddall; Jeffery Webster; Monte R. Weimer; Gregory T. Whiteker; Carla N. Yerkes

Multiple classes of commercially important auxin herbicides have been discovered since the 1940s including the aryloxyacetates (2,4-D, MCPA, dichlorprop, mecoprop, triclopyr, and fluroxypyr), the benzoates (dicamba), the quinoline-2-carboxylates (quinclorac and quinmerac), the pyrimidine-4-carboxylates (aminocyclopyrachlor), and the pyridine-2-carboxylates (picloram, clopyralid, and aminopyralid). In the last 10 years, two novel pyridine-2-carboxylate (or picolinate) herbicides were discovered at Dow AgroSciences. This paper will describe the structure activity relationship study that led to the discovery of the 6-aryl-picolinate herbicides Arylex™ active (2005) and Rinskor™ active (2010). While Arylex was developed primarily for use in cereal crops and Rinskor is still in development primarily for use in rice crops, both herbicides will also be utilized in additional crops.


Bioorganic & Medicinal Chemistry | 2016

SAR studies directed toward the pyridine moiety of the sap-feeding insecticide sulfoxaflor (Isoclast™ active).

Michael R. Loso; Zoltan Benko; Ann M. Buysse; Timothy C. Johnson; Benjamin M. Nugent; Richard B. Rogers; Thomas C. Sparks; Nick X. Wang; Gerald B. Watson; Yuanming Zhu

Sap-feeding insect pests constitute a major insect pest complex that includes a range of aphids, whiteflies, planthoppers and other insect species. Sulfoxaflor (Isoclast™ active), a new sulfoximine class insecticide, targets sap-feeding insect pests including those resistant to many other classes of insecticides. A structure activity relationship (SAR) investigation of the sulfoximine insecticides revealed the importance of a 3-pyridyl ring and a methyl substituent on the methylene bridge linking the pyridine and the sulfoximine moiety to achieving strong Myzus persicae activity. A more in depth QSAR investigation of pyridine ring substituents revealed a strong correlation with the calculated logoctanol/water partition coefficient (SlogP). Model development resulted in a highly predictive model for a set of 18 sulfoximines including sulfoxaflor. The model is consistent with and helps explain the highly optimized pyridine substitution pattern for sulfoxaflor.


Pest Management Science | 2015

Expanding the structure–activity relationship of sulfoxaflor: the synthesis and biological activity of N‐heterocyclic sulfoximines

Benjamin M. Nugent; Ann M. Buysse; Michael R. Loso; Jon M. Babcock; Timothy C. Johnson; M Paige Oliver; Timothy Martin; Matthias S. Ober; Nneka Breaux; Andrew P. Robinson; Yelena Adelfinskaya

BACKGROUND Sulfoxaflor, a new insect control agent developed by Dow AgroSciences, exhibits broad-spectrum control of many sap-feeding insect pests, including aphids, whiteflies, leafhoppers, planthoppers and lygus bugs. During the development of sulfoxaflor, structure-activity relationship (SAR) exploration of the sulfoximine functional group revealed that the nature of the sulfoximine nitrogen substituent significantly affects insecticidal acitivity. As part of the investigation to probe the various electronic, steric and lipophilic parameters at this position, a series of N-heterocyclic sulfoximines were synthesized and tested for bioactivity against green peach aphid. RESULTS Using a variety of chemistries, the nitrile substituent was replaced with different substituted five- and six-membered heterocycles. The compounds in the series were then tested for insecticidal acitivty against green peach aphid in foliar spray assays. In spite of the larger steric demand of these substituents, the resulting N-heterocyclic sulfoximine analogs displayed good levels of efficacy. In particular, the N-thiazolyl sulfoximines exhibited the greatest activity, with LC50 values as low as 1 ppm. CONCLUSIONS The novel series of N-heterocyclic sulfoximines helped to advance the current knowledge of the sulfoxaflor SAR, and demonstrated that the structural requirement for the sulfoximine nitrogen position was not limited to small, electron-deficient moeities, but rather was tolerant of larger functionality.


Pest Management Science | 2017

Synthesis and Biological Activity of a New Class of Insecticides: the N-(5-Aryl-1,3,4-thiadiazol-2-yl)amides.

Joseph D. Eckelbarger; Marshall H. Parker; Maurice Ch Yap; Ann M. Buysse; Jonathan M. Babcock; Ricky Hunter; Yelena Adelfinskaya; Jack Geno Samaritoni; Negar Garizi; Tony K. Trullinger

BACKGROUND Optimization studies on a high-throughput screening (HTS) hit led to the discovery of a series of N-(6-arylpyridazin-3-yl)amides with insecticidal activity. It was hypothesized that the isosteric replacement of the pyridazine ring with a 1,3,4-thiadiazole ring could lead to more potent biological activity and/or a broader sap-feeding pest spectrum. The resulting N-(5-aryl-1,3,4-thiadiazol-2-yl)amides were explored as a new class of insecticides. RESULTS Several methods for 2-amino-1,3,4-thiadiazole synthesis were used for the preparation of key synthetic intermediates. Subsequent coupling to variously substituted carboxylic acid building blocks furnished the final targets, which were tested for insecticidal activity against susceptible strains of Aphis gossypii (Glover) (cotton aphid), Myzus persicae (Sulzer) (green peach aphid) and Bemisia tabaci (Gennadius) (sweetpotato whitefly). CONCLUSION Structure-activity relationship (SAR) studies on both the amide tail and the aryl A-ring of novel N-(5-aryl-1,3,4-thiadiazol-2-yl)amides led to a new class of insecticidal molecules active against sap-feeding insect pests.


Pest Management Science | 2017

Studies toward understanding the SAR around the sulfoximine moiety of the sap-feeding insecticide sulfoxaflor.

Ann M. Buysse; Benjamin M. Nugent; Nick X. Wang; Zoltan Benko; Nneka Breaux; Richard Rogers; Yuanming Zhu

BACKGROUND The discovery of sulfoxaflor (Isoclast™ active) stemmed from a novel scaffold-based approach toward identifying bioactive molecules. It exhibits broad-spectrum control of many sap-feeding insect pests, including aphids, whiteflies, hoppers and Lygus. Systematic modifications of the substituents flanking each side of the sulfoximine moiety were carried out to determine whether these changes would improve potency. RESULTS Structure-activity relationship (SAR) studies showed that, with respect to the methylene linker, both mono- and disubstitution with alkyl groups of varying sizes as well as cyclic analogs exhibited excellent control of cotton aphids. However, against green peach aphids a decrease in activity was observed with substituents larger than ethyl as well as larger cycloalkyl groups. At the terminal tail there appeared to be a narrow steric tolerance as well, with linear groups or small rings more active against green peach aphids than bulkier groups. CONCLUSION A novel series of compounds exploring the substituents flanking the sulfoximine moiety of sulfoxaflor were prepared and tested for bioactivity against cotton aphids and green peach aphids. SAR studies indicated that a decrease in green peach aphid potency was observed at the methylene linker as well as at the terminal tail with bulkier substituents. A quantitative structure-activity relationship analysis of the compounds revealed significant correlation of activity with two molecular descriptors, vol (volume of a molecule) and GCUT_SMR_3 (molar refractivity). This predictive model helps to explain the observed activity with the various substituents.


Pest Management Science | 2017

Synthesis and Biological Activity of Pyridazine Amides, Hydrazones and Hydrazides

Ann M. Buysse; Maurice C. H. Yap; Ricky Hunter; Jonathan M. Babcock; Xinpei Huang; Marshall H. Parker

BACKGROUND Optimization studies on compounds initially designed to be herbicides led to the discovery of a series of [6-(3-pyridyl)pyridazin-3-yl]amides exhibiting aphicidal properties. Systematic modifications of the amide moiety as well as the pyridine and pyridazine rings were carried out to determine if these changes could improve insecticidal potency. RESULTS Structure-activity relationship (SAR) studies showed that changes to the pyridine and pyridazine rings generally resulted in a significant loss of insecticidal potency against green peach aphids [Myzus persicae (Sulzer)] and cotton aphids [(Aphis gossypii (Glover)]. However, replacement of the amide moiety with hydrazines, hydrazones, or hydrazides appeared to be tolerated, with small aliphatic substituents being especially potent. CONCLUSIONS A series of aphicidal [6-(3-pyridyl)pyridazin-3-yl]amides were discovered as a result of random screening of compounds that were intially investigated as herbicides. Follow-up studies of the structure-activity relationship of these [6-(3-pyridyl)pyridazin-3-yl]amides showed that biosteric replacement of the amide moiety was widely tolerated suggesting that further opportunities for exploitation may exist for this new area of insecticidal chemistry. Insecticidal efficacy from the original hit, compound 1, to the efficacy of compound 14 produced greater than 10-fold potency improvement against Aphis gossypii and greater than 14-fold potency improvement against Myzus persicae.


Archive | 2002

6-aryl-4-aminopicolinates and their use as herbicides

Terry William Balko; Ann M. Buysse; Jeffrey Epp; Stephen Craig Fields; Christian T. Lowe; Renee Joan Keese; John Sanders Richburg; James Ruiz; Monte R. Weimer; Renard Antonio Green; Roger E. Gast; Kristy Bryan; Nicholas Martin Irvine; William C. Lo; William Kirkland Brewster; Jeffrey Dale Webster


Archive | 2014

Pesticidal compositions and processes related thereto

Maurice C. H. Yap; Ann M. Buysse; Daniel Knueppel; Yu Zhang; Negar Garizi; Noormohamed M. Niyaz; Christian T. Lowe; Ricky Hunter; Tony K. Trullinger; David A. Demeter; Dan Pernich; Carl Deamicis; Ronald Ross; Timothy C. Johnson


Archive | 2001

Compounds having fungicidal activity and processes to make and use same

Michael John Ricks; Carla Jean Rasmussen Klittich; Jeannie Rachel Phillips Cetusic; Marilene Tenguan Iamauti; Irene Mae Morrison; Michael Sullenberger; William C. Lo; Ann M. Buysse; Brent J. Rieder; John Todd Mathieson; Monica Britt Olson


Archive | 2004

6-alkyl or alkenyl-4-aminopicolinates and their use as herbicides

Terry William Balko; Ann M. Buysse; Stephen Craig Fields; Nicholas Martin Irvine; William Chi Leung Lo; Christian T. Lowe; John Sanders Richburg; Paul R. Schmitzer

Collaboration


Dive into the Ann M. Buysse's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge