Ann-Marie Chacko
University of Pennsylvania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ann-Marie Chacko.
Biomaterials | 2012
Eric Simone; Blaine J. Zern; Ann-Marie Chacko; John L. Mikitsh; Eric Blankemeyer; Silvia Muro; Radu V. Stan; Vladimir R. Muzykantov
Targeting of therapeutics or imaging agents to the endothelium has the potential to improve specificity and effectiveness of treatment for many diseases. One strategy to achieve this goal is the use of nanoparticles (NPs) targeted to the endothelium by ligands of protein determinants present on this tissue, including cell adhesion molecules, peptidases, and cell receptors. However, detachment of the radiolabel probes from NPs poses a significant problem. In this study, we devised polymeric NPs directly labeled with radioiodine isotopes including the positron emission tomography (PET) isotope (124)I, and characterized their targeting to specific endothelial determinants. This approach provided sizable, targetable probes for specific detection of endothelial surface determinants non-invasively in live animals. Direct conjugation of radiolabel to NPs allowed for stable longitudinal tracking of tissue distribution without label detachment even in an aggressive proteolytic environment. Further, this approach permits tracking of NP pharmacokinetics in real-time and non-invasive imaging of the lung in mice using micro-PET imaging. The use of this strategy will considerably improve investigation of NP interactions with target cells and PET imaging in small animals, which ultimately can aid in the optimization of targeted drug delivery.
ACS Nano | 2013
Blaine J. Zern; Ann-Marie Chacko; Jin Liu; Colin F. Greineder; Eric Blankemeyer; Ravi Radhakrishnan; Vladimir R. Muzykantov
Targeting nanoparticles (NPs) loaded with drugs and probes to precise locations in the body may improve the treatment and detection of many diseases. Generally, to achieve targeting, affinity ligands are introduced on the surface of NPs that can bind to molecules present on the cell of interest. Optimization of ligand density is a critical parameter in controlling NP binding to target cells, and a higher ligand density is not always the most effective. In this study, we investigated how NP avidity affects targeting to the pulmonary vasculature, using NPs targeted to ICAM-1. This cell adhesion molecule is expressed by quiescent endothelium at modest levels and is upregulated in a variety of pathological settings. NP avidity was controlled by ligand density, with the expected result that higher avidity NPs demonstrated greater pulmonary uptake than lower avidity NPs in both naive and pathological mice. However, in comparison with high-avidity NPs, low-avidity NPs exhibited several-fold higher selectivity of targeting to pathological endothelium. This finding was translated into a PET imaging platform that was more effective in detecting pulmonary vascular inflammation using low-avidity NPs. Furthermore, computational modeling revealed that elevated expression of ICAM-1 on the endothelium is critical for multivalent anchoring of NPs with low avidity, while high-avidity NPs anchor effectively to both quiescent and activated endothelium. These results provide a paradigm that can be used to optimize NP targeting by manipulating ligand density and may find biomedical utility for increasing detection of pathological vasculature.
Expert Opinion on Drug Delivery | 2013
Ann-Marie Chacko; Chunsheng Li; Daniel A. Pryma; Steven Brem; George Coukos; Vladimir R. Muzykantov
Introduction: Brain tumors are inherently difficult to treat in large part due to the cellular blood–brain barriers (BBBs) that limit the delivery of therapeutics to the tumor tissue from the systemic circulation. Virtually no large molecules, including antibody-based proteins, can penetrate the BBB. With antibodies fast becoming attractive ligands for highly specific molecular targeting to tumor antigens, a variety of methods are being investigated to enhance the access of these agents to intracranial tumors for imaging or therapeutic applications. Areas covered: This review describes the characteristics of the BBB and the vasculature in brain tumors, described as the blood–brain tumor barrier (BBTB). Antibodies targeted to molecular markers of central nervous system (CNS) tumors will be highlighted, and current strategies for enhancing the delivery of antibodies across these cellular barriers into the brain parenchyma to the tumor will be discussed. Noninvasive imaging approaches to assess BBB/BBTB permeability and/or antibody targeting will be presented as a means of guiding the optimal delivery of targeted agents to brain tumors. Expert opinion: Preclinical and clinical studies highlight the potential of several approaches in increasing brain tumor delivery across the BBB divide. However, each carries its own risks and challenges. There is tremendous potential in using neuroimaging strategies to assist in understanding and defining the challenges to translating and optimizing molecularly targeted antibody delivery to CNS tumors to improve clinical outcomes.
PLOS ONE | 2012
Ann-Marie Chacko; Madhura Nayak; Colin F. Greineder; Horace M. DeLisser; Vladimir R. Muzykantov
Antibodies to platelet endothelial cell adhesion molecule-1 (PECAM-1) facilitate targeted drug delivery to endothelial cells by “vascular immunotargeting.” To define the targeting quantitatively, we investigated the endothelial binding of monoclonal antibodies (mAbs) to extracellular epitopes of PECAM-1. Surprisingly, we have found in human and mouse cell culture models that the endothelial binding of PECAM-directed mAbs and scFv therapeutic fusion protein is increased by co-administration of a paired mAb directed to an adjacent, yet distinct PECAM-1 epitope. This results in significant enhancement of functional activity of a PECAM-1-targeted scFv-thrombomodulin fusion protein generating therapeutic activated Protein C. The “collaborative enhancement” of mAb binding is affirmed in vivo, as manifested by enhanced pulmonary accumulation of intravenously administered radiolabeled PECAM-1 mAb when co-injected with an unlabeled paired mAb in mice. This is the first demonstration of a positive modulatory effect of endothelial binding and vascular immunotargeting provided by the simultaneous binding a paired mAb to adjacent distinct epitopes. The “collaborative enhancement” phenomenon provides a novel paradigm for optimizing the endothelial-targeted delivery of therapeutic agents.
Perspectives in Medicinal Chemistry | 2014
John L. Mikitsh; Ann-Marie Chacko
The treatment of central nervous system (CNS) disease has long been difficult due to the ineffectiveness of drug delivery across the blood-brain barrier (BBB). This review summarizes important concepts of the BBB in normal versus pathophysiology and how this physical, enzymatic, and efflux barrier provides necessary protection to the CNS during drug delivery, and consequently treatment challenging. Small molecules account for the vast majority of available CNS drugs primarily due to their ability to penetrate the phospholipid membrane of the BBB by passive or carrier-mediated mechanisms. Physiochemical and biological factors relevant for designing small molecules with optimal capabilities for BBB permeability are discussed, as well as the most promising classes of transporters suitable for small-molecule drug delivery. Clinically translatable imaging methodologies for detecting and quantifying drug uptake and targeting in the brain are discussed as a means of further understanding and refining delivery parameters for both drugs and imaging probes in preclinical and clinical domains. This information can be used as a guide to design drugs with preserved drug action and better delivery profiles for improved treatment outcomes over existing therapeutic approaches.
PLOS ONE | 2013
Colin F. Greineder; Ann-Marie Chacko; Sergei Zaytsev; Blaine J. Zern; Ronald Carnemolla; Elizabeth D. Hood; Jingyan Han; Bi-Sen Ding; Charles T. Esmon; Vladimir R. Muzykantov
The use of targeted therapeutics to replenish pathologically deficient proteins on the luminal endothelial membrane has the potential to revolutionize emergency and cardiovascular medicine. Untargeted recombinant proteins, like activated protein C (APC) and thrombomodulin (TM), have demonstrated beneficial effects in acute vascular disorders, but have failed to have a major impact on clinical care. We recently reported that TM fused with an scFv antibody fragment to platelet endothelial cell adhesion molecule-1 (PECAM-1) exerts therapeutic effects superior to untargeted TM. PECAM-1 is localized to cell-cell junctions, however, whereas the endothelial protein C receptor (EPCR), the key co-factor of TM/APC, is exposed in the apical membrane. Here we tested whether anchoring TM to the intercellular adhesion molecule (ICAM-1) favors scFv/TM collaboration with EPCR. Indeed: i) endothelial targeting scFv/TM to ICAM-1 provides ∼15-fold greater activation of protein C than its PECAM-targeted counterpart; ii) blocking EPCR reduces protein C activation by scFv/TM anchored to endothelial ICAM-1, but not PECAM-1; and iii) anti-ICAM scFv/TM fusion provides more profound anti-inflammatory effects than anti-PECAM scFv/TM in a mouse model of acute lung injury. These findings, obtained using new translational constructs, emphasize the importance of targeting protein therapeutics to the proper surface determinant, in order to optimize their microenvironment and beneficial effects.
ACS Nano | 2015
Taejong Paik; Ann-Marie Chacko; John L. Mikitsh; Joseph S. Friedberg; Daniel A. Pryma; Christopher B. Murray
Isotopically labeled nanomaterials have recently attracted much attention in biomedical research, environmental health studies, and clinical medicine because radioactive probes allow the elucidation of in vitro and in vivo cellular transport mechanisms, as well as the unambiguous distribution and localization of nanomaterials in vivo. In addition, nanocrystal-based inorganic materials have a unique capability of customizing size, shape, and composition; with the potential to be designed as multimodal imaging probes. Size and shape of nanocrystals can directly influence interactions with biological systems, hence it is important to develop synthetic methods to design radiolabeled nanocrystals with precise control of size and shape. Here, we report size- and shape-controlled synthesis of rare earth fluoride nanocrystals doped with the β-emitting radioisotope yttrium-90 ((90)Y). Size and shape of nanocrystals are tailored via tight control of reaction parameters and the type of rare earth hosts (e.g., Gd or Y) employed. Radiolabeled nanocrystals are synthesized in high radiochemical yield and purity as well as excellent radiolabel stability in the face of surface modification with different polymeric ligands. We demonstrate the Cerenkov radioluminescence imaging and magnetic resonance imaging capabilities of (90)Y-doped GdF3 nanoplates, which offer unique opportunities as a promising platform for multimodal imaging and targeted therapy.
The Journal of Nuclear Medicine | 2014
Ann-Marie Chacko; Chunsheng Li; Madhura Nayak; John L. Mikitsh; Jia Hu; Catherine Hou; Luigi Grasso; Nicholas C. Nicolaides; Vladimir R. Muzykantov; Chaitanya R. Divgi; George Coukos
Tumor endothelial marker 1 (TEM1/endosialin) is a tumor vascular marker highly overexpressed in multiple human cancers with minimal expression in normal adult tissue. In this study, we report the preparation and evaluation of 124I-MORAb-004, a humanized monoclonal antibody targeting an extracellular epitope of human TEM1 (hTEM1), for its ability to specifically and sensitively detect vascular cells expressing hTEM1 in vivo. Methods: MORAb-004 was directly iodinated with 125I and 124I, and in vitro binding and internalization parameters were characterized. The in vivo behavior of radioiodinated MORAb-004 was characterized in mice bearing subcutaneous ID8 tumors enriched with mouse endothelial cells expressing hTEM1 and by biodistribution and small-animal immuno-PET studies. Results: MORAb-004 was radiolabeled with high efficiency and isolated in high purity. In vitro studies demonstrated specific and sensitive binding of MORAb-004 to MS1 mouse endothelial cells expressing hTEM1, with no binding to control MS1 cells. 125I-MORAb-004 and 124I-MORAb-004 both had an immunoreactivity of approximately 90%. In vivo biodistribution experiments revealed rapid, highly specific and sensitive uptake of MORAb-004 in MS1-TEM1 tumors at 4 h (153.2 ± 22.2 percentage injected dose per gram [%ID/g]), 24 h (127.1 ± 42.9 %ID/g), 48 h (130.3 ± 32.4 %ID/g), 72 h (160.9 ± 32.1 %ID/g), and 6 d (10.7 ± 1.8 %ID/g). Excellent image contrast was observed with 124I-immuno-PET. MORAb-004 uptake was statistically higher in TEM1-positive tumors than in control tumors. Binding specificity was confirmed by blocking studies using excess nonlabeled MORAb-004. Conclusion: In our preclinical model, with hTEM1 exclusively expressed on engineered murine endothelial cells that integrate into the tumor vasculature, 124I-MORAb-004 displays high tumor–to–background tissue contrast for detection of hTEM1 in easily accessible tumor vascular compartments. These studies strongly suggest the clinical utility of 124I-MORAb-004 immuno-PET in assessing TEM1 tumor-status.
Cancer Biology & Therapy | 2014
Chunsheng Li; Ann-Marie Chacko; Jia Hu; Kosei Hasegawa; Jennifer Swails; Luigi Grasso; Wafik S. El-Deiry; Nicholas C. Nicolaides; Vladimir R. Muzykantov; Chaitanya R. Divgi; George Coukos
Tumor endothelial marker 1 (TEM1, endosialin) is a tumor vascular marker with significant diagnostic and therapeutic potential. However, in vivo small animal models to test affinity reagents specifically targeted to human (h)TEM1 are limited. We describe a new mouse tumor model where tumor vascular endothelial cells express hTEM1 protein. Methods: Immortalized murine endothelial cells MS1 were engineered to express hTEM1 and firefly luciferase and were inoculated in nude mice either alone, to form hemangioma-like endothelial grafts, or admixed with ID8 ovarian tumor cells, to form chimeric endothelial-tumor cell grafts. MORAb-004, a monoclonal humanized IgG1 antibody specifically recognizing human TEM1 was evaluated for targeted theranostic applications, i.e., for its ability to affect vascular grafts expressing hTEM1 as well as being a tool for molecular positron emission tomography (PET) imaging. Results: Naked MORAb-004 treatment of mice bearing angioma grafts or chimeric endothelial-tumor grafts significantly suppressed the ability of hTEM1-positive endothelial cells, but not control endothelial cells, to form grafts and dramatically suppressed local angiogenesis. In addition, highly efficient radioiodination of MORAb-004 did not impair its affinity for hTEM1, and [124I]-MORAb-004-PET enabled non-invasive visualization of tumors enriched with hTEM1-positive, but not hTEM1 negative vasculature with high degree of specificity and sensitivity. Conclusion: The development of a new robust endothelial graft model expressing human tumor vascular proteins will help accelerate the development of novel theranostics targeting the tumor vasculature, which exhibit affinity specifically to human targets but not their murine counterparts. Our results also demonstrate the theranostic potential of MORAb-004 as PET imaging tracer and naked antibody therapy for TEM1-positive tumor.
Medicinal Chemistry | 2011
Ann-Marie Chacko; Chaitanya R. Divgi
Positron emission tomography (PET) is a powerful molecular imaging technology with the ability to image and monitor molecular events in vivo and in real time. With the increased application of PET radiopharmaceuticals for imaging physiological and pathological processes in vivo, there is a demand for versatile positron emitters with longer physical and biological half-lives. Traditional PET radionuclides, such as carbon-11 ((11)C) and fluorine-18 ((18)F), have relatively short half-lives (20 min and 110 min, respectively). Among the currently available positron emitters, the non-standard radiohalogen iodine-124 ((124)I) has the longest physical half-life at 4.2 d. This, combined with the well characterized radiochemistry of radioiodine, is contributing to the increasing utility of (124)I in investigating slow and complex pharmacokinetic processes in clinical nuclear medicine and small animal PET imaging studies. This review will summarize the progress to date on the potential of (124)I as a positron emitting nuclide for molecular imaging purposes, beginning with the production of (124)I. Particular emphasis will be placed on the basic radiochemistry as it applies to the production of various (124)I-labeled compounds, from small molecules, to biomolecules such as peptides and proteins, and finally to macromolecules like nanoparticles. The review will conclude by highlighting promising future directions in using (124)I as a positron emitter in PET radiochemistry and molecular imaging.