Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ann Marie Craig is active.

Publication


Featured researches published by Ann Marie Craig.


Cell | 2004

Neurexins Induce Differentiation of GABA and Glutamate Postsynaptic Specializations via Neuroligins

Ethan R. Graf; XueZhao Zhang; Shan-Xue Jin; Michael W. Linhoff; Ann Marie Craig

Formation of synaptic connections requires alignment of neurotransmitter receptors on postsynaptic dendrites opposite matching transmitter release sites on presynaptic axons. beta-neurexins and neuroligins form a trans-synaptic link at glutamate synapses. We show here that neurexin alone is sufficient to induce glutamate postsynaptic differentiation in contacting dendrites. Surprisingly, neurexin also induces GABA postsynaptic differentiation. Conversely, neuroligins induce presynaptic differentiation in both glutamate and GABA axons. Whereas neuroligins-1, -3, and -4 localize to glutamate postsynaptic sites, neuroligin-2 localizes primarily to GABA synapses. Direct aggregation of neuroligins reveals a linkage of neuroligin-2 to GABA and glutamate postsynaptic proteins, but the other neuroligins only to glutamate postsynaptic proteins. Furthermore, mislocalized expression of neuroligin-2 disperses postsynaptic proteins and disrupts synaptic transmission. Our findings indicate that the neurexin-neuroligin link is a core component mediating both GABAergic and glutamatergic synaptogenesis, and differences in isoform localization and binding affinities may contribute to appropriate differentiation and specificity.


The Journal of Neuroscience | 2007

NMDA Receptor Subunits Have Differential Roles in Mediating Excitotoxic Neuronal Death Both In Vitro and In Vivo

Yitao Liu; Tak Pan Wong; Michelle Aarts; Amanda Rooyakkers; Lidong Liu; Ted Weita Lai; Dong Chuan Wu; Jie Lu; Michael Tymianski; Ann Marie Craig; Yu Tian Wang

Well-documented experimental evidence from both in vitro and in vivo models of stroke strongly supports the critical involvement of NMDA receptor-mediated excitotoxicity in neuronal damage after stroke. Despite this, the results of clinical trials testing NMDA receptor antagonists as neuroprotectants after stroke and brain trauma have been discouraging. Here, we report that in mature cortical cultures, activation of either synaptic or extrasynaptic NR2B-containing NMDA receptors results in excitotoxicity, increasing neuronal apoptosis. In contrast, activation of either synaptic or extrasynaptic NR2A-containing NMDA receptors promotes neuronal survival and exerts a neuroprotective action against both NMDA receptor-mediated and non-NMDA receptor-mediated neuronal damage. A similar opposing action of NR2B and NR2A in mediating cell death and cell survival was also observed in an in vivo rat model of focal ischemic stroke. Moreover, we found that blocking NR2B-mediated cell death was effective in reducing infarct volume only when the receptor antagonist was given before the onset of stroke and not 4.5 h after stroke. In great contrast, activation of NR2A-mediated cell survival signaling with administration of either glycine alone or in the presence of NR2B antagonist significantly attenuated ischemic brain damage even when delivered 4.5 h after stroke onset. Together, the present work provides a molecular basis for the dual roles of NMDA receptors in promoting neuronal survival and mediating neuronal damage and suggests that selective enhancement of NR2A-containing NMDA receptor activation with glycine may constitute a promising therapy for stroke.


Neuron | 1997

Activity Regulates the Synaptic Localization of the NMDA Receptor in Hippocampal Neurons

Anuradha Rao; Ann Marie Craig

We describe here a novel effect of activity on the subcellular distribution of NMDA receptors in hippocampal neurons in culture. In spontaneously active neurons, NMDA receptors were clustered at a few synaptic and nonsynaptic sites. Chronic blockade of NMDA receptor activity induced a 380% increase in the number of NMDA receptor clusters and a shift to a more synaptic distribution. This effect was reversible. The distributions of the presynaptic marker synaptophysin, the AMPA-type glutamate receptor subunit GluR1, and the putative NMDA receptor clustering protein PSD-95 were not affected by blockade. Regulation of the synaptic localization of NMDA receptors by activity may define a novel mechanism by which input controls a neurons ability to modify its synapses.


Current Opinion in Neurobiology | 2007

Neurexin-neuroligin signaling in synapse development

Ann Marie Craig; Yunhee Kang

Neurexins and neuroligins are emerging as central organizing molecules for excitatory glutamatergic and inhibitory GABAergic synapses in mammalian brain. They function as cell adhesion molecules, bridging the synaptic cleft. Remarkably, each partner can trigger formation of a hemisynapse: neuroligins trigger presynaptic differentiation and neurexins trigger postsynaptic differentiation. Recent protein interaction assays and cell culture studies indicate a selectivity of function conferred by alternative splicing in both partners. An insert at site 4 of beta-neurexins selectively promotes GABAergic synaptic function, whereas an insert at site B of neuroligin 1 selectively promotes glutamatergic synaptic function. Initial knockdown and knockout studies indicate that neurexins and neuroligins have an essential role in synaptic transmission, particularly at GABAergic synapses, but further studies are needed to assess the in vivo functions of these complex protein families.


Neuron | 1993

The distribution of glutamate receptors in cultured rat hippocampal neurons : postsynaptic clustering of AMPA-selective subunits

Ann Marie Craig; Craig D. Blackstone; Richard L. Huganir; Gary Banker

The distribution of several glutamate receptor subunits was investigated in cultured rat hippocampal neurons by in situ hybridization and immunocytochemistry. The AMPA/kainate-selective receptors GluR1-6 exhibited two patterns of mRNA expression: most neurons expressed GluR1, R2, and R6, whereas only about 20% expressed significant levels of GluR3, R4, and R5. By immunocytochemistry, the metabotropic glutamate receptor mGluR1 alpha was detectable only in a subpopulation of GABAergic interneurons. GluR1 and GluR2/3 segregated to the somatodendritic domain within the first week in culture, even in the absence of synaptogenesis. Glutamate receptor-enriched spines developed later and were present only on presumptive pyramidal cells, not on GABAergic interneurons. Clusters of GluR1 and GluR2/3 completely colocalized and were restricted to a subset of postsynaptic sites. Thus, glutamate receptor subunits exhibit both a cell type-specific expression and a selective subcellular localization.


Neuron | 1998

CRIPT, a Novel Postsynaptic Protein that Binds to the Third PDZ Domain of PSD-95/SAP90

Martin Niethammer; Juli G. Valtschanoff; Tarun M. Kapoor; Daniel W. Allison; Richard J. Weinberg; Ann Marie Craig; Morgan Sheng

The synaptic protein PSD-95/SAP90 binds to and clusters a variety of membrane proteins via its two N-terminal PDZ domains. We report a novel protein, CRIPT, which is highly conserved from mammals to plants and binds selectively to the third PDZ domain (PDZ3) of PSD-95 via its C terminus. While conforming to the consensus PDZ-binding C-terminal sequence (X-S/T-X-V-COOH), residues at the -1 position and upstream of the last four amino acids of CRIPT determine its specificity for PDZ3. In heterologous cells, CRIPT causes a redistribution of PSD-95 to microtubules. In brain, CRIPT colocalizes with PSD-95 in the postsynaptic density and can be coimmunoprecipitated with PSD-95 and tubulin. These findings suggest that CRIPT may regulate PSD-95 interaction with a tubulin-based cytoskeleton in excitatory synapses.


Neuron | 2009

An Unbiased Expression Screen for Synaptogenic Proteins Identifies the LRRTM Protein Family as Synaptic Organizers

Michael W. Linhoff; Juha Laurén; Robert M. Cassidy; Frederick A. Dobie; Hideto Takahashi; Haakon B. Nygaard; Matti S. Airaksinen; Stephen M. Strittmatter; Ann Marie Craig

Delineating the molecular basis of synapse development is crucial for understanding brain function. Cocultures of neurons with transfected fibroblasts have demonstrated the synapse-promoting activity of candidate molecules. Here, we performed an unbiased expression screen for synaptogenic proteins in the coculture assay using custom-made cDNA libraries. Reisolation of NGL-3/LRRC4B and neuroligin-2 accounts for a minority of positive clones, indicating that current understanding of mammalian synaptogenic proteins is incomplete. We identify LRRTM1 as a transmembrane protein that induces presynaptic differentiation in contacting axons. All four LRRTM family members exhibit synaptogenic activity, LRRTMs localize to excitatory synapses, and artificially induced clustering of LRRTMs mediates postsynaptic differentiation. We generate LRRTM1(-/-) mice and reveal altered distribution of the vesicular glutamate transporter VGLUT1, confirming an in vivo synaptic function. These results suggest a prevalence of LRR domain proteins in trans-synaptic signaling and provide a cellular basis for the reported linkage of LRRTM1 to handedness and schizophrenia.


Neuron | 2002

Gamma Protocadherins Are Required for Survival of Spinal Interneurons

Xiaozhong Wang; Joshua A. Weiner; Sabine Levi; Ann Marie Craig; Allan Bradley; Joshua R. Sanes

The murine genome contains approximately 70 protocadherin (Pcdh) genes. Many are expressed in the nervous system, suggesting that Pcdhs may specify neuronal connectivity. Here, we analyze the 22 contiguous genes of the Pcdh-gamma cluster. Individual neurons express subsets of Pcdh-gamma genes. Pcdh-gamma proteins are present in most neurons and associated with, but not confined to, synapses. Early steps in neuronal migration, axon outgrowth, and synapse formation proceed in mutant mice lacking all 22 Pcdh-gamma genes. At late embryonic stages, however, dramatic neurodegeneration leads to neonatal death. In mutant spinal cord, many interneurons are lost, but sensory and motor neurons are relatively spared. In cultures from mutant spinal cord, neurons differentiate and form synapses but then die. Thus, Pcdh-gamma genes are dispensable for at least some aspects of connectivity but required for survival of specific neuronal types.


The Journal of Neuroscience | 2004

Gephyrin Is Critical for Glycine Receptor Clustering But Not for the Formation of Functional GABAergic Synapses in Hippocampal Neurons

Sabine Levi; Kenneth R. Tovar; Ann Marie Craig

The role of the scaffolding protein gephyrin at hippocampal inhibitory synapses is not well understood. A previous study (Kneussel et al., 1999) reported a complete loss of synaptic clusters of the major GABAAR subunits α2 and γ2 in hippocampal neurons lacking gephyrin. In contrast, we show here that GABAAR α2 and γ2 subunits do cluster at pyramidal synapses in hippocampal cultures from gephyrin-/- mice, albeit at reduced levels compared with control neurons. Synaptic aggregation of GABAAR α1 on interneurons was identical between the culture types. Furthermore, we recorded miniature IPSCs (mIPSCs) from gephyrin-/- neurons. Although the mean mIPSC amplitude was reduced (by 23%) compared with control, the frequency of these events was unchanged. Cell surface labeling experiments indicated that gephyrin contributes, in part, to aggregation but not to insertion or stabilization of GABAAR α2 and γ2 in the plasma membrane. Thus, a major gephyrin-independent component of hippocampal inhibitory synapse development must exist. We also report that glycine receptors cluster at GABAergic synapses in a subset of hippocampal interneurons and pyramidal neurons. Unlike GABAARs, synaptic clustering of glycine receptors was completely abolished in gephyrin-/- neurons. Finally, artificial extrasynaptic aggregation of GABAAR was able to redistribute and cocluster gephyrin by a mechanism requiring a neuron-specific modification or intermediary protein. We propose a model of hippocampal inhibitory synapse development in which some GABAARs cluster at synapses by a gephyrin-independent mechanism and recruit gephyrin. This clustered gephyrin may then recruit glycine receptors, additional GABAARs, and other signal-transducing components.


Current Opinion in Neurobiology | 2011

Synaptic organizing complexes

Tabrez J. Siddiqui; Ann Marie Craig

A number of synaptogenic factors induce presynaptic or postsynaptic differentiation when presented to axons or dendrites. Many such factors participate in bidirectional trans-synaptic adhesion complexes. Axonal neurexins interacting in an isoform-specific code with multiple dendritic partners (neuroligins, LRRTMs, or Cbln-GluRδ), and axonal protein tyrosine phosphatase receptors interacting with dendritic NGL-3, nucleate local networks of high-affinity protein-protein interactions leading to aligned presynaptic and postsynaptic differentiation. Additional secreted target-derived factors such as fibroblast growth factors and glial-derived factors such as thrombospondin bind specific axonal or dendritic receptors stimulating signal transduction mechanisms to promote selective aspects of synapse development. Together with classical adhesion molecules and controlled by transcriptional cascades, these synaptogenic adhesion complexes and secreted factors organize the molecular composition and thus functional properties of central synapses.

Collaboration


Dive into the Ann Marie Craig's collaboration.

Top Co-Authors

Avatar

Yunhee Kang

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Hideto Takahashi

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Yu Tian Wang

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Kevin She

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Tabrez J. Siddiqui

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Frederick A. Dobie

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Steven A. Connor

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Rachel Wong

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Amanda Rooyakkers

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge