Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ann R. Holmes is active.

Publication


Featured researches published by Ann R. Holmes.


Clinical Microbiology Reviews | 2009

Efflux-Mediated Antifungal Drug Resistance

Richard D. Cannon; Erwin Lamping; Ann R. Holmes; Kyoko Niimi; Philippe Baret; Mikhail V. Keniya; Koichi Tanabe; Masakazu Niimi; André Goffeau; Brian C. Monk

SUMMARY Fungi cause serious infections in the immunocompromised and debilitated, and the incidence of invasive mycoses has increased significantly over the last 3 decades. Slow diagnosis and the relatively few classes of antifungal drugs result in high attributable mortality for systemic fungal infections. Azole antifungals are commonly used for fungal infections, but azole resistance can be a problem for some patient groups. High-level, clinically significant azole resistance usually involves overexpression of plasma membrane efflux pumps belonging to the ATP-binding cassette (ABC) or the major facilitator superfamily class of transporters. The heterologous expression of efflux pumps in model systems, such Saccharomyces cerevisiae, has enabled the functional analysis of efflux pumps from a variety of fungi. Phylogenetic analysis of the ABC pleiotropic drug resistance family has provided a new view of the evolution of this important class of efflux pumps. There are several ways in which the clinical significance of efflux-mediated antifungal drug resistance can be mitigated. Alternative antifungal drugs, such as the echinocandins, that are not efflux pump substrates provide one option. Potential therapeutic approaches that could overcome azole resistance include targeting efflux pump transcriptional regulators and fungal stress response pathways, blockade of energy supply, and direct inhibition of efflux pumps.


Journal of Dental Research | 1995

Oral Candida: Clearance, Colonization, or Candidiasis?

Richard D. Cannon; Ann R. Holmes; A.B. Mason; Brian C. Monk

Candida albicans is frequently isolated from the human mouth, yet few carriers develop clinical signs of candidiasis. Oral candidiasis presents clinically in many forms. This reflects the ability of the yeast to colonize different oral surfaces and the variety of factors which predispose the host to Candida colonization and subsequent infection. Colonization of the oral cavity appears to be facilitated by several specific adherence interactions between C. albicans and oral surfaces which enable the yeast to resist host clearance mechanisms. Thus, Candida has been shown to adhere to complement receptors, various extracellular matrix proteins, and specific sugar residues displayed on host or bacterial surfaces in the oral cavity. Oral candidiasis results from yeast overgrowth and penetration of the oral tissues when the hosts physical and immunological defenses have been undermined. Tissue invasion may be assisted by secreted hydrolytic enzymes, hyphal formation, and contact sensing. While these and other phenotypic characteristics may endow certain Candida species or strains with a competitive advantage in the oral cavity, it is the hosts immune competence that ultimately determines whether clearance, colonization, or candidiasis occurs.


Molecular Microbiology | 2001

The pavA gene of Streptococcus pneumoniae encodes a fibronectin-binding protein that is essential for virulence.

Ann R. Holmes; Roderick McNab; Kw Millsap; Manfred Rohde; Sven Hammerschmidt; Jane L. Mawdsley; Howard F. Jenkinson

Streptococcus pneumoniae colonizes the nasopharynx in up to 40% of healthy subjects, and is a leading cause of middle ear infections (otitis media), meningitis and pneumonia. Pneumococci adhere to glycosidic receptors on epithelial cells and to immobilized fibronectin, but the bacterial adhesins mediating these reactions are largely uncharacterized. In this report we describe a novel pneumococcal protein PavA, which binds fibronectin and is associated with pneumococcal adhesion and virulence. The pavA gene, present in 64 independent isolates of S. pneumoniae tested, encodes a 551 amino acid residue polypeptide with 67% identical amino acid sequence to Fbp54 protein in Streptococcus pyogenes. PavA localized to the pneumococcal cell outer surface, as demonstrated by immunoelectron microscopy, despite lack of conventional secretory or cell‐surface anchorage signals within the primary sequence. Full‐length recombinant PavA polypeptide bound to immobilized human fibronectin in preference to fluid‐phase fibronectin, in a heparin‐sensitive interaction, and blocked binding of wild‐type pneumococcal cells to fibronectin. However, a C‐terminally truncated PavA′ polypeptide (362 aa residues) failed to bind fibronectin or block pneumococcal cell adhesion. Expression of pavA in Enterococcus faecalis JH2–2 conferred > sixfold increased cell adhesion levels to fibronectin over control JH2–2 cells. Isogenic mutants of S. pneumoniae, either abrogated in PavA expression or producing a 42 kDa C‐terminally truncated protein, showed up to 50% reduced binding to immobilized fibronectin. Inactivation of pavA had no effects on growth rate, cell morphology, cell‐surface physico‐chemical properties, production of pneumolysin, autolysin, or surface proteins PspA and PsaA. Isogenic pavA mutants of encapsulated S. pneumoniae D39 were approximately 104‐fold attenuated in virulence in the mouse sepsis model. These results provide evidence that PavA fibronectin‐binding protein plays a direct role in the pathogenesis of pneumococcal infections.


Antimicrobial Agents and Chemotherapy | 2001

Functional Expression of Candida albicans Drug Efflux Pump Cdr1p in a Saccharomyces cerevisiae Strain Deficient in Membrane Transporters

Kenjirou Nakamura; Masakazu Niimi; Kyoko Niimi; Ann R. Holmes; Jenine E. Yates; Anabelle Decottignies; Brian C. Monk; André Goffeau; Richard D. Cannon

ABSTRACT Analysis of the transport functions of individualCandida albicans plasma membrane drug efflux pumps is hampered by the multitude of endogenous transporters. We have stably expressed C. albicans Cdr1p, the major pump implicated in multiple-drug-resistance phenotypes, from the genomicPDR5 locus in a Saccharomyces cerevisiae mutant (AD1-8u−) from which seven major transporters of the ATP-binding cassette (ABC) family have been deleted. High-level expression of Cdr1p, under the control of the S. cerevisiae PDR5 promoter and driven by S. cerevisiae Pdr1p transcriptional regulator mutation pdr1-3, was demonstrated by increased levels of mRNA transcription, increased levels of nucleoside triphosphatase activity, and immunodetection in plasma membrane fractions. S. cerevisiae AD1-8u− was hypersensitive to azole antifungals (the MICs at which 80% of cells were inhibited [MIC80s] were 0.625 μg/ml for fluconazole, <0.016 μg/ml for ketoconazole, and <0.016 μg/ml for itraconazole), whereas the strain (AD1002) that overexpressed C. albicans Cdr1p was resistant to azoles (MIC80s of fluconazole, ketoconazole, and itraconazole, 30, 0.5, and 4 μg/ml, respectively). Drug resistance correlated with energy-dependent drug efflux. AD1002 demonstrated resistance to a variety of structurally unrelated chemicals which are potential drug pump substrates. The controlled overexpression of C. albicansCdr1p in an S. cerevisiae background deficient in other pumps allows the functional analysis of pumping specificity and mechanisms of a major ABC transporter involved in drug efflux from an important human pathogen.


Molecular Microbiology | 1996

Tandem genes encode cell-surface polypeptides SspA and SspB which mediate adhesion of the oral bacterium Streptococcus gordonii to human and bacterial receptors

Donald R. Demuth; Yang Duan; Wanda Brooks; Ann R. Holmes; Roderick McNab; Howard F. Jenkinson

The highly conserved antigen I/II family of polypeptides produced by oral streptococci are believed to be colonization determinants and may mediate adhesion of bacterial cells to salivary glycoproteins adsorbed to cells and tissues in the human oral cavity. Streptococcus gordonii is shown to express, on the cell surface, two antigen I/II polypeptides designated SspA and SspB (formerly Ssp‐5) that are the products of tandemly arranged chromosomal genes. The structure and arrangement of these genes is similar in two independently isolated strains, DL1 and M5, of S. gordonii. The mature polypeptide sequences of M5 SspA (1539 amino acid (aa) residues) and SspB (1462 aa residues) are almost wholly conserved (98% identical) in the C‐terminal regions (from residues 796 in SspA and 719 in SspB, to the respective C‐termini), well‐conserved (84%) at the N‐terminal regions (residues 1–429), and divergent (only 27% identical residues) within the intervening central regions. Insertional inactivation of the sspA gene in S. gordonii DL1 resulted in reduced binding of cells to salivary agglutinin glycoprotein (SAG), human erythrocytes, and to the oral bacterium Actinomyces naeslundii. Further reductions in streptococcal cell adhesion to SAG and to two strains of A. naeslundii were observed when both sspA and sspB genes were inactivated. The results suggest that both SspA and SspB polypeptides are involved in adhesion of S. gordonii cells to human and bacterial receptors.


Eukaryotic Cell | 2007

Characterization of Three Classes of Membrane Proteins Involved in Fungal Azole Resistance by Functional Hyperexpression in Saccharomyces cerevisiae

Erwin Lamping; Brian C. Monk; Kyoko Niimi; Ann R. Holmes; Sarah Tsao; Koichi Tanabe; Masakazu Niimi; Yoshimasa Uehara; Richard D. Cannon

ABSTRACT The study of eukaryotic membrane proteins has been hampered by a paucity of systems that achieve consistent high-level functional protein expression. We report the use of a modified membrane protein hyperexpression system to characterize three classes of fungal membrane proteins (ABC transporters Pdr5p, CaCdr1p, CaCdr2p, CgCdr1p, CgPdh1p, CkAbc1p, and CneMdr1p, the major facilitator superfamily transporter CaMdr1p, and the cytochrome P450 enzyme CaErg11p) that contribute to the drug resistance phenotypes of five pathogenic fungi and to express human P glycoprotein (HsAbcb1p). The hyperexpression system consists of a set of plasmids that direct the stable integration of a single copy of the expression cassette at the chromosomal PDR5 locus of a modified host Saccharomyces cerevisiae strain, ADΔ. Overexpression of heterologous proteins at levels of up to 29% of plasma membrane protein was achieved. Membrane proteins were expressed with or without green fluorescent protein (GFP), monomeric red fluorescent protein, His, FLAG/His, Cys, or His/Cys tags. Most GFP-tagged proteins tested were correctly trafficked within the cell, and His-tagged proteins could be affinity purified. Kinetic analysis of ABC transporters indicated that the apparent Km value and the Vmax value of ATPase activities were not significantly affected by the addition of His tags. The efflux properties of seven fungal drug pumps were characterized by their substrate specificities and their unique patterns of inhibition by eight xenobiotics that chemosensitized S. cerevisiae strains overexpressing ABC drug pumps to fluconazole. The modified hyperexpression system has wide application for the study of eukaryotic membrane proteins and could also be used in the pharmaceutical industry for drug screening.


Antimicrobial Agents and Chemotherapy | 2006

Overexpression of Candida albicans CDR1, CDR2, or MDR1 Does Not Produce Significant Changes in Echinocandin Susceptibility

Kyoko Niimi; Katsuyuki Maki; Fumiaki Ikeda; Ann R. Holmes; Erwin Lamping; Masakazu Niimi; Brian C. Monk; Richard D. Cannon

ABSTRACT The micafungin and caspofungin susceptibilities of Candida albicans laboratory and clinical isolates and of Saccharomyces cerevisiae strains stably hyperexpressing fungal ATP-binding cassette (ABC) or major facilitator superfamily (MFS) transporters involved in azole resistance were determined using three separate methods. Yeast strains hyperexpressing individual alleles of ABC transporters or an MFS transporter from C. albicans gave the expected resistance profiles for the azoles fluconazole, itraconazole, and voriconazole. The strains hyperexpressing CDR2 showed slightly decreased susceptibility to caspofungin in agar plate drug resistance assays, as previously reported, but increased susceptibility to micafungin compared with either the strains hyperexpressing CDR1 or the null parent deleted of seven ABC transporters. The strains hyperexpressing CDR1 showed slightly decreased susceptibility to micafungin in these assays. A C. albicans clinical isolate overexpressing both Cdr1p and Cdr2p relative to its azole-sensitive isogenic progenitor acquired resistance to azole drugs and showed reduced susceptibility to caspofungin and slightly increased susceptibility to micafungin in agar plate drug resistance assays. None of the strains showed significant resistance to micafungin or caspofungin in liquid microdilution susceptibility assays. The antifungal activities of micafungin and caspofungin were similar in agarose diffusion assays, although the shape and size of the caspofungin inhibitory zones were affected by medium composition. The assessment of micafungin and caspofungin potency is therefore assay dependent; the differences seen with agar plate drug resistance assays occur over narrow ranges of echinocandin concentrations and are not of clinical significance.


Antimicrobial Agents and Chemotherapy | 2008

ABC Transporter Cdr1p Contributes More than Cdr2p Does to Fluconazole Efflux in Fluconazole-Resistant Candida albicans Clinical Isolates

Ann R. Holmes; Ya-Hsun Lin; Kyoko Niimi; Erwin Lamping; Mikhail V. Keniya; Masakazu Niimi; Koichi Tanabe; Brian C. Monk; Richard D. Cannon

ABSTRACT Fluconazole (FLC) remains the antifungal drug of choice for non-life-threatening Candida infections, but drug-resistant strains have been isolated during long-term therapy with azoles. Drug efflux, mediated by plasma membrane transporters, is a major resistance mechanism, and clinically significant resistance in Candida albicans is accompanied by increased transcription of the genes CDR1 and CDR2, encoding plasma membrane ABC-type transporters Cdr1p and Cdr2p. The relative importance of each transporter protein for efflux-mediated resistance in C. albicans, however, is unknown; neither the relative amounts of each polypeptide in resistant isolates nor their contributions to efflux function have been determined. We have exploited the pump-specific properties of two antibody preparations, and specific pump inhibitors, to determine the relative expression and functions of Cdr1p and Cdr2p in 18 clinical C. albicans isolates. The antibodies and inhibitors were standardized using recombinant Saccharomyces cerevisiae strains that hyper-express either protein in a host strain with a reduced endogenous pump background. In all 18 C. albicans strains, including 13 strains with reduced FLC susceptibilities, Cdr1p was present in greater amounts (2- to 20-fold) than Cdr2p. Compounds that inhibited Cdr1p-mediated function, but had no effect on Cdr2p efflux activity, significantly decreased the resistance to FLC of seven representative C. albicans isolates, whereas three other compounds that inhibited both pumps did not cause increased chemosensitization of these strains to FLC. We conclude that Cdr1p expression makes a greater functional contribution than does Cdr2p to FLC resistance in C. albicans.


Journal of Industrial Microbiology & Biotechnology | 1995

Interactions ofCandida albicans with bacteria and salivary molecules in oral biofilms

Ann R. Holmes; Richard D. Cannon; Howard F. Jenkinson

The yeastCandida albicans coaggregates with a variety of streptococcal species, an interaction that may promote oral colonization by yeast cells.C. albicans andCandida tropicalis are the yeasts most frequently isolated from the human oral cavity and our data demonstrate that both these species bind toStreptococcus gordonii NCTC 7869 while two otherCandida species (Candida krusei andCandida kefyr) do not. Adherence ofC. albicans was greatest when the yeast had been grown at 30° C to mid-exponential growth phase. For 21 strains ofC. albicans there was a positive correlation between the ability to adhere toS. gordonii and adherence to experimental salivary pellicle. Whole saliva either stimulated or slightly inhibited adherence ofC. albicans toS. gordonii depending on the streptococcal growth conditions. The results suggest that the major salivary adhesins and coaggregation adhesins ofC. albicans are co-expressed.


Molecular Microbiology | 2006

Heterozygosity and functional allelic variation in the Candida albicans efflux pump genes CDR1 and CDR2

Ann R. Holmes; Sarah Tsao; Soo-Wee Ong; Erwin Lamping; Kyoko Niimi; Brian C. Monk; Masakazu Niimi; Aki Kaneko; Barbara R. Holland; Jan Schmid; Richard D. Cannon

Elevated expression of the plasma membrane drug efflux pump proteins Cdr1p and Cdr2p was shown to accompany decreased azole susceptibility in Candida albicans clinical isolates. DNA sequence analysis revealed extensive allelic heterozygosity, particularly of CDR2. Cdr2p alleles showed different abilities to transport azoles when individually expressed in Saccharomyces cerevisiae. Loss of heterozygosity, however, did not accompany decreased azole sensitivity in isogenic clinical isolates. Two adjacent non‐synonymous single nucleotide polymorphisms (NS‐SNPs), G1473A and I1474V in the putative transmembrane (TM) helix 12 of CDR2, were found to be present in six strains including two isogenic pairs. Site‐directed mutagenesis showed that the TM‐12 NS‐SNPs, and principally the G1473A NS‐SNP, contributed to functional differences between the proteins encoded by the two Cdr2p alleles in a single strain. Allele‐specific PCR revealed that both alleles were equally frequent among 69 clinical isolates and that the majority of isolates (81%) were heterozygous at the G1473A/I1474V locus, a significant (P < 0.001) deviation from the Hardy–Weinberg equilibrium. Phylogenetic analysis by maximum likelihood (Paml) identified 33 codons in CDR2 in which amino acid allelic changes showed a high probability of being selectively advantageous. In contrast, all codons in CDR1 were under purifying selection. Collectively, these results indicate that possession of two functionally different CDR2 alleles in individual strains may confer a selective advantage, but that this is not necessarily due to azole resistance.

Collaboration


Dive into the Ann R. Holmes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masakazu Niimi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Koichi Tanabe

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge