Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ann V. Hertzel is active.

Publication


Featured researches published by Ann V. Hertzel.


Trends in Endocrinology and Metabolism | 2000

THE MAMMALIAN FATTY ACID-BINDING PROTEIN MULTIGENE FAMILY: MOLECULAR AND GENETIC INSIGHTS INTO FUNCTION

Ann V. Hertzel; David A. Bernlohr

Intracellular fatty acid-binding proteins associate with fatty acids and other hydrophobic biomolecules in an internal cavity, providing for solubilization and metabolic trafficking. Analyses of their in vivo function by molecular and genetic techniques reveal specific function(s) that fatty acid-binding proteins perform with respect to fatty acid uptake, oxidation and overall metabolic homeostasis.


Journal of Medicinal Chemistry | 2009

Identification and characterization of a small molecule inhibitor of Fatty Acid binding proteins.

Ann V. Hertzel; Kristina Hellberg; Joseph M. Reynolds; Andrew C. Kruse; Brittany E. Juhlmann; Anne J. Smith; Mark A. Sanders; Douglas H. Ohlendorf; Jill Suttles; David A. Bernlohr

Molecular disruption of the lipid carrier AFABP/aP2 in mice results in improved insulin sensitivity and protection from atherosclerosis. Because small molecule inhibitors may be efficacious in defining the mechanism(s) of AFABP/aP2 action, a chemical library was screened and identified 1 (HTS01037) as a pharmacologic ligand capable of displacing the fluorophore 1-anilinonaphthalene 8-sulfonic acid from the lipid binding cavity. The X-ray crystal structure of 1 bound to AFABP/aP2 revealed that the ligand binds at a structurally similar position to a long-chain fatty acid. Similar to AFABP/aP2 knockout mice, 1 inhibits lipolysis in 3T3-L1 adipocytes and reduces LPS-stimulated inflammation in cultured macrophages. 1 acts as an antagonist of the protein-protein interaction between AFABP/aP2 and hormone sensitive lipase but does not activate PPARgamma in macrophage or CV-1 cells. These results identify 1 as an inhibitor of fatty acid binding and a competitive antagonist of protein-protein interactions mediated by AFABP/aP2.


Molecular and Cellular Biochemistry | 1998

Regulation of adipocyte gene expression by polyunsaturated fatty acids

Ann V. Hertzel; David A. Bernlohr

A wide number of adipocyte genes are regulated by exogenous polyunsaturated fatty acids (PUFA) through the actions of the peroxisome proliferator activated receptor. Such genes include the adipocyte lipid-binding protein (ALBP or aP2) which plays a central role in facilitating the trafficking of fatty acids within adipocytes. Work from a number of laboratories has suggested the key elements of the lipid signal transduction pathway include: (1) the transport of exogenous PUFAs across the plasma membrane, (2) metabolism of polyunsaturated fatty acids to second messengers including 15-deoxy Δ12,14 prostaglandin J2 (15dPGJ2), (3) trafficking of 15dPGJ2 and other second messengers from the smooth ER to the nucleus for association with peroxisome proliferator activated receptorγ (PPARγ), and (4) dimerization of PPARγ with retinoid X receptor (RXR) permitting regulation of transcription via association with any of several nuclear co-activators or repressors. In addition to the aP2 gene being a target of activation by fatty acids, at the protein level ALBP/aP2 plays a role in trafficking of fatty acids and/or their metabolises. We report here that in a heterologous system using CV-1 cells transiently transfected with PPARγ2, co-expression of ALBP/aP2 enhances the PPAR-dependent activation of gene transcription. These results suggest that ALBP/aP2 functions as a positive factor in fatty acid signalling by directly targetting and delivering fatty acids metabolises to the lipid signal transduction pathway


Advances in Experimental Medicine and Biology | 1997

Regulation of Gene Expression in Adipose Cells by Polyunsaturated Fatty Acids

David A. Bernlohr; Natalie Ribarik Coe; Melanie A. Simpson; Ann V. Hertzel

In fat cells polyunsaturated fatty acids are both substrates for, and products of, triacylglycerol metabolism. Dietary fatty acids are efficiently incorporated into the triacylglycerol droplet under lipogenic conditions while rapidly mobilizing them during lipolytic stimulation. Hence, the flux and magnitude of the fatty acid pool in adipocytes is constantly changing in response to hormonal, metabolic and genetic determinants. Due to the rapidly changing flux of fatty acids, the majority of genes encoding enzymes and proteins of lipid metabolism are largely refractory to long-term regulatory control by fatty acids. Only at extremes of high or low lipid levels, or under pathophysiological conditions, do adipose genes respond by up- or down-regulating gene expression. Despite the lack of responsiveness to lipids in adipose tissue, a surprisingly large number of genes have been characterized recently as lipid responsive when assayed in heterologous systems. These observations suggest an endogenous negative element exists in the lipid signaling pathway in adipocytes. The major intracellular lipid binding protein in adipose cells is the adipocyte lipid binding protein (ALBP), the product of the aP2 gene. This protein is 15 kDa, abundant and found exclusively in the cytoplasm of adipocytes. The protein binds fatty acids and related lipids in a 1:1 stoichiometry within a large water filled interior cavity. The lipid binding protein forms high affinity associations with polyunsaturated fatty acids such as arachidonic acid (Kd approximately 250 nM) but not with prostaglandins of the E, D or J series (Kd > 4 microM). The upstream region of the aP2 gene contains a peroxisome-proliferator activated receptor response element which associates with PPARs to regulate its expression. A positive autoregulatory circuit exists to upregulate lipid binding protein expression when polyunsaturated fatty acid levels are increased. Analysis of adipose tissue from aP2 null animals generated by a targeted disruption revealed that the partial loss of ALBP expression in heterozygotes and complete lack of ALBP in the nulls was accompanied by a compensatory up-regulation of the keratinocyte lipid binding protein. However, the total amount of lipid binding protein in the nulls was less than 15% that in the wild type littermates. No evidence was found for upregulation of other lipid binding proteins such as the heart FABP or liver FABP. In aP2 nulls, the fatty acid composition was unaltered but the mass of fatty acid per gram tissue more than doubled relative to wild type. In heterozygotes, the level of fatty acid was intermediate to that of wild-type and nulls, consistent with an intermediate level of lipid binding protein. These results indicate that the fatty acid pool level in adipocytes is inversely correlated with the amount of lipid binding protein. Since prostaglandin biosynthesis is dependent upon polyunsaturated fatty acid substrates, the intracellular lipid binding proteins control accessibility of substrates of the prostanoid pathway. Intracellular lipid binding proteins therefore are negative elements in polyunsaturated fatty acid control of gene expression.


Diabetes | 2013

Ebselen treatment prevents islet apoptosis, maintains intranuclear Pdx-1 and MafA levels, and preserves β-cell mass and function in ZDF rats

Jana Mahadevan; Susan Parazzoli; Elizabeth Oseid; Ann V. Hertzel; David A. Bernlohr; Sara N. Vallerie; Chang Qin Liu; Melissa Lopez; Jamie S. Harmon; R. Paul Robertson

We reported earlier that β-cell–specific overexpression of glutathione peroxidase (GPx)-1 significantly ameliorated hyperglycemia in diabetic db/db mice and prevented glucotoxicity-induced deterioration of β-cell mass and function. We have now ascertained whether early treatment of Zucker diabetic fatty (ZDF) rats with ebselen, an oral GPx mimetic, will prevent β-cell deterioration. No other antihyperglycemic treatment was given. Ebselen ameliorated fasting hyperglycemia, sustained nonfasting insulin levels, lowered nonfasting glucose levels, and lowered HbA1c levels with no effects on body weight. Ebselen doubled β-cell mass, prevented apoptosis, prevented expression of oxidative stress markers, and enhanced intranuclear localization of pancreatic and duodenal homeobox (Pdx)-1 and v-maf musculoaponeurotic fibrosarcoma oncogene family, protein A (MafA), two critical insulin transcription factors. Minimal β-cell replication was observed in both groups. These findings indicate that prevention of oxidative stress is the mechanism whereby ebselen prevents apoptosis and preserves intranuclear Pdx-1 and MafA, which, in turn, is a likely explanation for the beneficial effects of ebselen on β-cell mass and function. Since ebselen is an oral antioxidant currently used in clinical trials, it is a novel therapeutic candidate to ameliorate fasting hyperglycemia and further deterioration of β-cell mass and function in humans undergoing the onset of type 2 diabetes.


Molecular and Cellular Biology | 2015

Uncoupling lipid metabolism from inflammation through fatty acid binding protein-dependent expression of UCP2

Hongliang Xu; Ann V. Hertzel; Kaylee A. Steen; Qigui Wang; Jill Suttles; David A. Bernlohr

ABSTRACT Chronic inflammation in obese adipose tissue is linked to endoplasmic reticulum (ER) stress and systemic insulin resistance. Targeted deletion of the murine fatty acid binding protein (FABP4/aP2) uncouples obesity from inflammation although the mechanism underlying this finding has remained enigmatic. Here, we show that inhibition or deletion of FABP4/aP2 in macrophages results in increased intracellular free fatty acids (FFAs) and elevated expression of uncoupling protein 2 (UCP2) without concomitant increases in UCP1 or UCP3. Silencing of UCP2 mRNA in FABP4/aP2-deficient macrophages negated the protective effect of FABP loss and increased ER stress in response to palmitate or lipopolysaccharide (LPS). Pharmacologic inhibition of FABP4/aP2 with the FABP inhibitor HTS01037 also upregulated UCP2 and reduced expression of BiP, CHOP, and XBP-1s. Expression of native FABP4/aP2 (but not the non-fatty acid binding mutant R126Q) into FABP4/aP2 null cells reduced UCP2 expression, suggesting that the FABP-FFA equilibrium controls UCP2 expression. FABP4/aP2-deficient macrophages are resistant to LPS-induced mitochondrial dysfunction and exhibit decreased mitochondrial protein carbonylation and UCP2-dependent reduction in intracellular reactive oxygen species. These data demonstrate that FABP4/aP2 directly regulates intracellular FFA levels and indirectly controls macrophage inflammation and ER stress by regulating the expression of UCP2.


Journal of Biological Chemistry | 2008

Mapping of the Hormone-sensitive Lipase Binding Site on the Adipocyte Fatty Acid-binding Protein (AFABP) IDENTIFICATION OF THE CHARGE QUARTET ON THE AFABP/aP2 HELIX-TURN-HELIX DOMAIN

Anne J. Smith; Mark A. Sanders; Brittany E. Juhlmann; Ann V. Hertzel; David A. Bernlohr

The hormone-sensitive lipase (HSL) and adipocyte fatty acid-binding protein (AFABP/aP2) form a physical complex that affects basal and hormone-stimulated adipocyte fatty acid efflux. Previous work has established that AFABP/aP2-HSL complex formation requires that HSL be in its activated, phosphorylated form and AFABP/aP2 have a bound fatty acid. To identify the HSL binding site of AFABP/aP2 a combination of alanine-scanning mutagenesis and fluorescence resonance energy transfer was used. Mutation of Asp17, Asp18, Lys21, or Arg30 (but not other amino acids in the helix-turn-helix region) to alanine inhibited interaction with HSL without affecting fatty acid binding. The cluster of residues on the helical domain of AFABP/aP2 form two ion pairs (Asp17-Arg30 and Asp18-Lys21) and identifies the region we have termed the charge quartet as the HSL interaction site. To demonstrate direct association, the non-interacting AFABP/aP2-D18K mutant was rescued by complementary mutation of HSL (K196E). The charge quartet is conserved on other FABPs that interact with HSL such as the heart and epithelial FABPs but not on non-interacting proteins from the liver or intestine and may be a general protein interaction domain utilized by fatty acid-binding proteins in regulatory control of lipid metabolism.


Molecular Endocrinology | 2016

Loss of Fatty Acid Binding Protein 4/aP2 Reduces Macrophage Inflammation Through Activation of SIRT3

Hongliang Xu; Ann V. Hertzel; Kaylee A. Steen; David A. Bernlohr

Activation of proinflammatory macrophages plays an important role in the pathogenesis of insulin resistance, type 2 diabetes, and atherosclerosis. Previous work using high fat-fed mice has shown that ablation of the adipocyte fatty acid binding protein (FABP4/aP2) in macrophages leads to an antiinflammatory state both in situ and in vivo, and the mechanism is linked, in part, to increased intracellular monounsaturated fatty acids and the up-regulation of uncoupling protein 2. Here, we show that loss of FABP4/aP2 in macrophages additionally induces sirtuin 3 (SIRT3) expression and that monounsaturated fatty acids (C16:1, C18:1) lead to increased SIRT3 protein expression. Increased expression of SirT3 in FABP4/aP2 null macrophages occurs at the protein level with no change in SirT3 mRNA. When compared with controls, silencing of SIRT3 in Raw246.7 macrophages leads to increased expression of inflammatory cytokines, inducible nitric oxide synthase and cyclooxygenase 2. In contrast, loss of SIRT3 in FABP4/aP2-deficient macrophages attenuates the suppressed inflammatory signaling, reduced reactive oxygen species production, lipopolysaccharide-induced mitochondrial dysfunction, and increased fatty acid oxidation. These results suggest that the antiinflammatory phenotype of FABP4/aP2 null mice is mediated by increased intracellular monounsaturated fatty acids leading to the increased expression of both uncoupling protein 2 and SirT3.


Biochimica et Biophysica Acta | 2013

Fatty acids induce leukotriene C4 synthesis in macrophages in a fatty acid binding protein-dependent manner.

Eric K. Long; Kristina Hellberg; Rocio Foncea; Ann V. Hertzel; Jill Suttles; David A. Bernlohr

Obesity results in increased macrophage recruitment to adipose tissue that promotes a chronic low-grade inflammatory state linked to increased fatty acid efflux from adipocytes. Activated macrophages produce a variety of pro-inflammatory lipids such as leukotriene C4 (LTC4) and 5-, 12-, and 15-hydroxyeicosatetraenoic acid (HETE) suggesting the hypothesis that fatty acids may stimulate eicosanoid synthesis. To assess if eicosanoid production increases with obesity, adipose tissue of leptin deficient ob/ob mice was analyzed. In ob/ob mice, LTC4 and 12-HETE levels increased in the visceral (but not subcutaneous) adipose depot while the 5-HETE levels decreased and 15-HETE abundance was unchanged. Since macrophages produce the majority of inflammatory molecules in adipose tissue, treatment of RAW264.7 or primary peritoneal macrophages with free fatty acids led to increased secretion of LTC4 and 5-HETE, but not 12- or 15-HETE. Fatty acid binding proteins (FABPs) facilitate the intracellular trafficking of fatty acids and other hydrophobic ligands and in vitro stabilize the LTC4 precursor leukotriene A4 (LTA4) from non-enzymatic hydrolysis. Consistent with a role for FABPs in LTC4 synthesis, treatment of macrophages with HTS01037, a specific FABP inhibitor, resulted in a marked decrease in both basal and fatty acid-stimulated LTC4 secretion but no change in 5-HETE production or 5-lipoxygenase expression. These results indicate that the products of adipocyte lipolysis may stimulate the 5-lipoxygenase pathway leading to FABP-dependent production of LTC4 and contribute to the insulin resistant state.


Biochemistry of Lipids, Lipoproteins and Membranes (Fifth Edition) | 2008

Lipid metabolism in adipose tissue

Ann V. Hertzel; Brian R. Thompson; Brian M. Wiczer; David A. Bernlohr

Publisher Summary This chapter focuses on the biochemistry of lipid metabolism in the adipocyte. Adipocytes make up approximately one-half of the cells in adipose tissue, the remainder being blood and endothelial cells, adipose precursor cells of varying degrees of differentiation, macrophages, and fibroblasts. In humans, small clusters of adipocytes are present that increase in size during gestation. Larger clusters of fat cells are associated with tissue vascularization and a general increase in cluster size is positively correlated with larger blood vessels. Paracrine/autocrine factors play a significant role in both capillary growth and adipose conversion. Recent advances have demonstrated that the adipocyte is not a passive lipid storage depot but a dynamic cell that plays a fundamental role in energy balance and overall body homeostasis. Moreover, the fat cell functions as a sensor of lipid levels, transmitting information to a neural circuit affecting major biological processes including hunger, sleep, and reproduction.

Collaboration


Dive into the Ann V. Hertzel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongliang Xu

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jill Suttles

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rocio Foncea

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott Kizy

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge