Ann V. Rowan
University of Sheffield
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ann V. Rowan.
The Holocene | 2014
Stephan Harrison; Ann V. Rowan; Neil F. Glasser; Jasper Knight; Mitchell A. Plummer; Stephanie C. Mills
It is widely believed that the last glaciers in the British Isles disappeared at the end of the Younger Dryas stadial (12.9–11.7 cal. kyr BP). Here, we use a glacier–climate model driven by data from local weather stations to show for the first time that glaciers developed during the Little Ice Age (LIA) in the Cairngorm Mountains. Our model is forced from contemporary conditions by a realistic difference in mean annual air temperature of −1.5°C and an increase in annual precipitation of 10%, and confirmed by sensitivity analyses. These results are supported by the presence of small boulder moraines well within Younger Dryas ice limits, and by a dating programme on a moraine in one cirque. As a result, we argue that the last glaciers in the Cairngorm Mountains (and perhaps elsewhere in upland Britain) existed in the LIA within the last few hundred years, rather than during the Younger Dryas.
Journal of Geophysical Research | 2014
Ann V. Rowan; Simon H. Brocklehurst; David M. Schultz; Mitchell A. Plummer; Leif S. Anderson; Neil F. Glasser
Glaciers respond to climate variations and leave geomorphic evidence that represents an important terrestrial paleoclimate record. However, the accuracy of paleoclimate reconstructions from glacial geology is limited by the challenge of representing mountain meteorology in numerical models. Precipitation is usually treated in a simple manner and yet represents difficult-to-characterize variables such as amount, distribution, and phase. Furthermore, precipitation distributions during a glacial probably differed from present-day interglacial patterns. We applied two models to investigate glacier sensitivity to temperature and precipitation in the eastern Southern Alps of New Zealand. A 2-D model was used to quantify variations in the length of the reconstructed glaciers resulting from plausible precipitation distributions compared to variations in length resulting from change in mean annual air temperature and precipitation amount. A 1-D model was used to quantify variations in length resulting from interannual climate variability. Assuming that present-day interglacial values represent precipitation distributions during the last glacial, a range of plausible present-day precipitation distributions resulted in uncertainty in the Last Glacial Maximum length of the Pukaki Glacier of 17.1 km (24%) and the Rakaia Glacier of 9.3 km (25%), corresponding to a 0.5°C difference in temperature. Smaller changes in glacier length resulted from a 50% decrease in precipitation amount from present-day values (−14% and −18%) and from a 50% increase in precipitation amount (5% and 9%). Our results demonstrate that precipitation distribution can produce considerable variation in simulated glacier extents and that reconstructions of paleoglaciers should include this uncertainty.
Geology | 2013
Ann V. Rowan; Mitchell A. Plummer; Simon H. Brocklehurst; Merren A. Jones; David M. Schultz
Sediment flux in proglacial fluvial settings is primarily controlled by discharge, which usually varies predictably over a glacial–interglacial cycle. However, glaciers can flow against the topographic gradient to cross drainage divides, reshaping fluvial drainage networks and dramatically altering discharge. In turn, these variations in discharge will be recorded by proglacial stratigraphy. Glacial-drainage capture often occurs in alpine environments where ice caps straddle range divides, and more subtly where shallow drainage divides cross valley floors. We investigate discharge variations resulting from glacial-drainage capture over the past 40 k.y. for the adjacent Ashburton, Rangitata, and Rakaia basins in the Southern Alps, New Zealand. Although glacial-drainage capture has previously been inferred in the range, our numerical glacier model provides the first quantitative demonstration that this process drives larger variations in discharge for a longer duration than those that occur due to climate change alone. During the Last Glacial Maximum, the effective drainage area of the Ashburton catchment increased to 160% of the interglacial value with drainage capture, driving an increase in discharge exceeding that resulting from glacier recession. Glacial-drainage capture is distinct from traditional (base level–driven) drainage capture and is often unrecognized in proglacial deposits, complicating interpretation of the sedimentary record of climate change.
The Holocene | 2017
Ann V. Rowan
Northern Hemisphere cooling between 1400 and 1900 in the Common Era (CE) resulted in the expansion of glaciers during a period known as the ‘Little Ice Age’ (LIA). Early investigation of recent advances of Himalayan glaciers assumed that these events were synchronous with LIA advances identified in Europe, based on the appearance and position of moraines and without numerical age control. However, applications of Quaternary dating techniques such as terrestrial cosmogenic nuclide dating have allowed researchers to determine numerical ages for these young moraines and clarify when glacial maxima occurred. This paper reviews geochronological evidence for the last advance of glaciers in the Himalaya. The 66 ages younger than 2000 years (0–2000 CE) calculated from 138 samples collected from glacial landforms demonstrate that peak moraine building occurred between 1300 and 1600 CE, slightly earlier than the coldest period of Northern Hemisphere air temperatures. The timing of LIA advances varied spatially, likely influenced by variations in topography and meteorology across and along the mountain range. Palaeoclimate proxies indicate cooling air temperatures from 1300 CE leading to a southward shift in the Asian monsoon, increased Westerly winter precipitation and generally wetter conditions across the range around 1400 and 1800 CE. The last advance of glaciers in the Himalaya during a period of variable climate resulted from cold Northern Hemisphere air temperatures and was sustained by increased snowfall as atmospheric circulation reorganised in response to cooling during the LIA.
Earth Surface Processes and Landforms | 2018
C. Scott Watson; Duncan J. Quincey; Jonathan L. Carrivick; Mark W. Smith; Ann V. Rowan; Robert C. Richardson
The water storage and energy transfer roles of supraglacial ponds are poorly constrained, yet they are thought to be important components of debris-covered glacier ablation budgets. We used an unmanned surface vessel (USV) to collect sonar depth measurements for 24 ponds to derive the first empirical relationship between their area and volume applicable to the size distribution of ponds commonly encountered on debris-covered glaciers. Additionally, we instrumented nine ponds with thermistors and three with pressure transducers, characterising their thermal regime and capturing three pond drainage events. The deepest and most irregularly-shaped ponds were those associated with ice cliffs, which were connected to the surface or englacial hydrology network (maximum depth = 45.6 m), whereas hydrologically-isolated ponds without ice cliffs were both more circular and shallower (maximum depth = 9.9 m). The englacial drainage of three ponds had the potential to melt ~100 ± 20 × 103 kg to ~470 ± 90 × 103 kg of glacier ice owing to the large volumes of stored water. Our observations of seasonal pond growth and drainage with their associated calculations of stored thermal energy have implications for glacier ice flow, the progressive enlargement and sudden collapse of englacial conduits, and the location of glacier ablation hot-spots where ponds and ice cliffs interact. Additionally, the evolutionary trajectory of these ponds controls large proglacial lake formation in deglaciating environments.
Journal of Maps | 2017
Morgan J. Gibson; Neil F. Glasser; Duncan J. Quincey; Ann V. Rowan; Tristram Irvine-Fynn
ABSTRACT The presence of supraglacial debris on glaciers in the Himalaya-Karakoram affects the ablation rate of these glaciers and their response to climatic change. To understand how supraglacial debris distribution and associated surface features vary spatially and temporally, geomorphological mapping was undertaken on Baltoro Glacier, Karakoram, for three time-separated images between 2001–2012. Debris is supplied to the glacier system through frequent but small landslides at the glacier margin that form lateral and medial moraines and less frequent but higher volume rockfall events which are more lobate and often discontinuous in form. Debris on the glacier surface is identified as a series of distinct lithological units which merge downglacier of the convergence area between the Godwin-Austen and Baltoro South tributary glaciers. Debris distribution varies as a result of complex interaction between tributary glaciers and the main glacier tongue, complicated further by surge events on some tributary glaciers. Glacier flow dynamics mainly controls the evolution of a supraglacial debris layer. Identifying such spatial variability in debris rock type and temporal variability in debris distribution has implications for glacier ablation rate, affecting glacier surface energy balance. Accordingly, spatial and temporal variation in supraglacial debris should be considered when determining mass balance for these glaciers through time.
Geophysical Research Letters | 2017
Tristram Irvine-Fynn; Philip R. Porter; Ann V. Rowan; Duncan J. Quincey; Morgan J. Gibson; Jonathan Bridge; C. Scott Watson; Alun Hubbard; Neil F. Glasser
Meltwater and runoff from glaciers in High Mountain Asia is a vital freshwater resource for one fifth of the Earths population. Between 13% and 36% of the regions glacierized areas exhibit surface debris cover and associated supraglacial ponds whose hydrological buffering roles remain unconstrained. We present a high-resolution meltwater hydrograph from the extensively debris-covered Khumbu Glacier, Nepal, spanning a seven-month period in 2014. Supraglacial ponds and accompanying debris cover modulate proglacial discharge by acting as transient and evolving reservoirs. Diurnally, the supraglacial pond system may store >23% of observed mean daily discharge, with mean recession constants ranging from 31 to 108 hours. Given projections of increased debris-cover and supraglacial pond extent across High Mountain Asia, we conclude that runoff regimes may become progressively buffered by the presence of supraglacial reservoirs. Incorporation of these processes is critical to improve predictions of the regions freshwater resource availability and cascading environmental effects downstream.
Earth Surface Processes and Landforms | 2018
Morgan J. Gibson; Tristram Irvine-Fynn; Patrick Wagnon; Ann V. Rowan; Duncan J. Quincey; Rachel Homer; Neil F. Glasser
Debris surface temperature is a function of debris characteristics and energy fluxes at the debris surface. However, spatial and temporal variability in debris surface temperature, and the debris properties that control it, are poorly constrained. Here, near‐surface debris temperature (Ts) is reported for 16 sites across the lower elevations of Khumbu Glacier, Nepal Himalaya, for the 2014 monsoon season. The debris layer at all sites was ≥1 m thick. We confirm the occurrence of temporal and spatial variability in Ts over a 67‐day period and investigate its controls. Ts was found to exhibit marked temporal fluctuations on diurnal, short‐term (1–8 days) and seasonal timescales. Over the study period, two distinct diurnal patterns in Ts were identified that varied in timing, daily amplitude and maximum temperature; days in the latter half of the study period (after Day of Year 176) exhibited a lower diurnal amplitude (mean = 23°C) and reduced maximum temperatures. Days with lower amplitude and minimum Ts were concurrent with periods of increased seasonal variability in on‐glacier air temperature and incoming shortwave radiation, with the increased frequency of these periods attributed to increasing cloud cover as the monsoon progressed. Spatial variability in Ts was manifested in variability of diurnal amplitude and maximum Ts of 7°C to 47°C between sites. Local slope, debris clast size and lithology were identified as the most important drivers of spatial variability in Ts, with inclusion of these three variables in the stepwise general linear models resulting in R2 ≥0.89 for six out of the seven sites. The complexity of surface energy fluxes and their influence on Ts highlight that assuming a simplified relationship between air temperature and debris surface temperature in glacier melt models, and a direct relationship between debris surface temperature and debris thickness for calculating supraglacial debris thickness, should be undertaken with caution.
Earth and Planetary Science Letters | 2015
Ann V. Rowan; David L. Egholm; Duncan J. Quincey; Neil F. Glasser
Earth and Planetary Science Letters | 2013
Aaron E. Putnam; Joerg M. Schaefer; George H. Denton; David J. A. Barrell; Bjørn G. Andersen; Tobias N.B. Koffman; Ann V. Rowan; Robert C. Finkel; Dylan H. Rood; Roseanne Schwartz; Marcus J. Vandergoes; Mitchell A. Plummer; Simon H. Brocklehurst; Samuel E. Kelley; Kathryn L. Ladig