Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Arís is active.

Publication


Featured researches published by Anna Arís.


Microbial Cell Factories | 2005

Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins

Elena García-Fruitós; Nuria González-Montalbán; Montse Morell; Andrea Vera; Rosa María Ferraz; Anna Arís; Salvador Ventura; Antonio Villaverde

BackgroundMany enzymes of industrial interest are not in the market since they are bio-produced as bacterial inclusion bodies, believed to be biologically inert aggregates of insoluble protein.ResultsBy using two structurally and functionally different model enzymes and two fluorescent proteins we show that physiological aggregation in bacteria might only result in a moderate loss of biological activity and that inclusion bodies can be used in reaction mixtures for efficient catalysis.ConclusionThis observation offers promising possibilities for the exploration of inclusion bodies as catalysts for industrial purposes, without any previous protein-refolding step.


Applied and Environmental Microbiology | 2007

Localization of functional polypeptides in bacterial inclusion bodies.

Elena García-Fruitós; Anna Arís; Antonio Villaverde

ABSTRACT Bacterial inclusion bodies, while showing intriguing amyloid-like features, such as a β-sheet-based intermolecular organization, binding to amyloid-tropic dyes, and origin in a sequence-selective deposition process, hold an important amount of native-like secondary structure and significant amounts of functional polypeptides. The aggregation mechanics supporting the occurrence of both misfolded and properly folded protein is controversial. Single polypeptide chains might contain both misfolded stretches driving aggregation and properly folded protein domains that, if embracing the active site, would account for the biological activities displayed by inclusion bodies. Alternatively, soluble, functional polypeptides could be surface adsorbed by interactions weaker than those driving the formation of the intermolecular β-sheet architecture. To explore whether the fraction of properly folded active protein is a natural component or rather a mere contaminant of these aggregates, we have explored their localization by image analysis of inclusion bodies formed by green fluorescent protein. Since the fluorescence distribution is not homogeneous and the core of inclusion bodies is particularly rich in active protein forms, such protein species cannot be passively trapped components and their occurrence might be linked to the reconstruction dynamics steadily endured in vivo by such bacterial aggregates. Intriguingly, even functional protein species in inclusion bodies are not excluded from the interface with the solvent, probably because of the porous structure of these particular protein aggregates.


Journal of Dairy Science | 2013

Effects of forage provision to young calves on rumen fermentation and development of the gastrointestinal tract.

Ll. Castells; A. Bach; Anna Arís; M. Terré

Fifteen Holstein male calves were randomly assigned to 1 of 3 dietary treatments according to age and body weight (BW) to determine the effects of feeding different forages sources on rumen fermentation and gastrointestinal tract (GIT) development. Treatments consisted of a starter (20% crude protein, 21% neutral detergent fiber) fed alone (CON) or supplemented with alfalfa (AH) or with oat hay (OH). All calves received 2L of milk replacer (MR) at 12.5% dry matter twice daily until 49 d of age. Calves received 2L of the same MR from 50 to 56 d of age and were weaned at 57 d of age. Individual starter, forage, and MR intakes were recorded daily and BW was recorded weekly. A rumen sample was taken weekly to determine rumen pH and volatile fatty acid concentrations. Three weeks after weaning, animals were harvested and each anatomical part of the GIT was separated and weighed with and without contents. Rumen pH was lower in CON than in OH and AH calves. Furthermore, acetate proportion in the rumen liquid tended to be greater in AH than in CON and OH treatments. Total GIT weight, expressed as a percentage of BW, tended to be greater in AH compared with the other 2 treatments. Rumen tissue tended to weigh more in CON than in OH animals. Animals with access to forage tended to have a greater expression of monocarboxylate transporter 1 than CON calves. In conclusion, calves supplemented with oat hay have a better rumen environment than calves offered no forage and do not have an increased gut fill.


Microbial Cell Factories | 2006

The chaperone DnaK controls the fractioning of functional protein between soluble and insoluble cell fractions in inclusion body-forming cells

Nuria González-Montalbán; Elena García-Fruitós; Salvador Ventura; Anna Arís; Antonio Villaverde

BackgroundThe molecular mechanics of inclusion body formation is still far from being completely understood, specially regarding the occurrence of properly folded, protein species that exhibit natural biological activities. We have here comparatively explored thermally promoted, in vivo protein aggregation and the formation of bacterial inclusion bodies, from both structural and functional sides. Also, the status of the soluble and insoluble protein versions in both aggregation systems have been examined as well as the role of the main molecular chaperones GroEL and DnaK in the conformational quality of the target polypeptide.ResultsWhile thermal denaturation results in the formation of heterogeneous aggregates that are rather stable in composition, protein deposition as inclusion bodies renders homogenous but strongly evolving structures, which are progressively enriched in the main protein species while gaining native-like structure. Although both type of aggregates display common features, inclusion body formation but not thermal-induced aggregation involves deposition of functional polypeptides that confer biological activity to such particles, at expenses of the average conformational quality of the protein population remaining in the soluble cell fraction. In absence of DnaK, however, the activity and conformational nativeness of inclusion body proteins are dramatically impaired while the soluble protein version gains specific activity.ConclusionThe chaperone DnaK controls the fractioning of active protein between soluble and insoluble cell fractions in inclusion body-forming cells but not during thermally-driven protein aggregation. This cell protein, probably through diverse activities, is responsible for the occurrence and enrichment in inclusion bodies of native-like, functional polypeptides, that are much less represented in other kind of protein aggregates.


Biochemical and Biophysical Research Communications | 2003

Engineering nuclear localization signals in modular protein vehicles for gene therapy.

Anna Arís; Antonio Villaverde

Amino acids from 126 to 135 of the SV40 virus T antigen act as efficient nuclear localization signal during infection but also when fused to recombinant proteins. This peptide has been inserted into two alternative acceptor sites of a modified Escherichia coli beta-galactosidase which also displays a DNA-binding domain, a cell-binding motif for integrin alpha(v)beta(3) targeting and cell internalization, and a cryptic nuclear targeting signal naturally present in the bacterial enzyme. In cultured cells, the presence of the SV40 peptide enhances the expression of a delivered DNA up to 30-fold. However, the DNA expression levels are largely depending on the chosen insertion site for the SV40 segment concomitant to the structural impact of peptide accommodation on the protein vehicle. The structural stability of the hybrid protein, apparently critical for efficient gene transfer, is discussed in the context of modular protein engineering to develop non-viral vectors for gene therapy.


Biotechnology and Bioengineering | 2000

Exploiting viral cell-targeting abilities in a single polypeptide, non-infectious, recombinant vehicle for integrin-mediated DNA delivery and gene expression.

Anna Arís; Jordi X. Feliu; Andrew T. Knight; Charles Coutelle; Antonio Villaverde

A recombinant, multifunctional protein has been designed for optimized, cell-targeted DNA delivery and gene expression in mammalian cells. This hybrid construct comprises a viral peptide ligand for integrin alpha(V)beta(3) binding, a DNA-condensing poly-L-lysine domain, and a complete, functional beta-galactosidase protein that serves simultaneously as purification tag and DNA-shielding agent. This recombinant protein is stable; it has been produced successfully in Escherichia coli and can be purified in a single step by affinity chromatography. At optimal molar ratios, mixtures of this vector and a luciferase-reporter plasmid form stable complexes that transfect cultured cells. After exposure to these cell-targeted complexes, steady levels of gene expression are observed for more than 3 days after transfection, representing between 20 and 40% of those achieved with untargeted, lipid-based DNA-condensing agents. The principle to include viral motifs for cell infection in single polypeptide recombinant proteins represents a promising approach towards the design of non-viral modular DNA transfer vectors that conserve the cell-target- ing specificity of native viruses and that do not need further processing after bioproduction in a recombinant host.


Biotechnology and Bioengineering | 1999

The expression of recombinant genes from bacteriophage lambda strong promoters triggers the SOS response in Escherichia coli

Anna Arís; José Luis Corchero; Antoni Benito; Xavier Carbonell; Elisenda Viaplana; Antonio Villaverde

The production of several non‐related heterologous proteins in recombinant Escherichia coli cells promotes a significant transcription of recA and sfiA SOS DNA repair genes. The activation of the SOS system occurs when the expression of plasmid‐encoded genes is directed by the strong lambda lytic promoters, but not by IPTG‐controlled promoters either at 37 or at 42°C, and it is linked to an extensive degradation of the proteins after their synthesis. The triggering signal for the SOS response could be an important arrest of cell DNA replication observed within the first hour after the induction of recombinant gene expression. The stimulation of this DNA repair system can partially account for the toxicity exhibited by recombinant proteins on actively producing E. coli cells.


BMC Neuroscience | 2006

Neuroprotection from NMDA excitotoxic lesion by Cu/Zn superoxide dismutase gene delivery to the postnatal rat brain by a modular protein vector

Hugo Peluffo; Laia Acarin; Anna Arís; Pau Gonzalez; Antoni Villaverde; Bernardo Castellano; Berta González

BackgroundSuperoxide mediated oxidative stress is a key neuropathologic mechanism in acute central nervous system injuries. We have analyzed the neuroprotective efficacy of the transient overexpression of antioxidant enzyme Cu/Zn Superoxide dismutase (SOD) after excitotoxic injury to the immature rat brain by using a recently constructed modular protein vector for non-viral gene delivery termed NLSCt. For this purpose, animals were injected with the NLSCt vector carrying the Cu/Zn SOD or the control GFP transgenes 2 hours after intracortical N-methyl-D-aspartate (NMDA) administration, and daily functional evaluation was performed. Moreover, 3 days after, lesion volume, neuronal degeneration and nitrotyrosine immunoreactivity were evaluated.ResultsOverexpression of Cu/Zn SOD transgene after NMDA administration showed improved functional outcome and a reduced lesion volume at 3 days post lesion. In secondary degenerative areas, increased neuronal survival as well as decreased numbers of degenerating neurons and nitrotyrosine immunoreactivity was seen. Interestingly, injection of the NLSCt vector carrying the control GFP transgene also displayed a significant neuroprotective effect but less pronounced.ConclusionWhen the appropriate levels of Cu/Zn SOD are expressed transiently after injury using the non-viral modular protein vector NLSCt a neuroprotective effect is seen. Thus recombinant modular protein vectors may be suitable for in vivo gene therapy, and Cu/Zn SOD should be considered as an interesting therapeutic transgene.


Microbial Cell Factories | 2006

Insertional protein engineering for analytical molecular sensing

Rosa María Ferraz; Andrea Vera; Anna Arís; Antonio Villaverde

The quantitative detection of low analyte concentrations in complex samples is becoming an urgent need in biomedical, food and environmental fields. Biosensors, being hybrid devices composed by a biological receptor and a signal transducer, represent valuable alternatives to non biological analytical instruments because of the high specificity of the biomolecular recognition. The vast range of existing protein ligands enable those macromolecules to be used as efficient receptors to cover a diversity of applications. In addition, appropriate protein engineering approaches enable further improvement of the receptor functioning such as enhancing affinity or specificity in the ligand binding. Recently, several protein-only sensors are being developed, in which either both the receptor and signal transducer are parts of the same protein, or that use the whole cell where the protein is produced as transducer. In both cases, as no further chemical coupling is required, the production process is very convenient. However, protein platforms, being rather rigid, restrict the proper signal transduction that necessarily occurs through ligand-induced conformational changes. In this context, insertional protein engineering offers the possibility to develop new devices, efficiently responding to ligand interaction by dramatic conformational changes, in which the specificity and magnitude of the sensing response can be adjusted up to a convenient level for specific analyte species. In this report we will discuss the major engineering approaches taken for the designing of such instruments as well as the relevant examples of resulting protein-only biosensors.


Human Gene Therapy | 2003

Nonviral gene delivery to the central nervous system based on a novel integrin-targeting multifunctional protein

Hugo Peluffo; Anna Arís; Laia Acarin; Berta González; Antonio Villaverde; Bernardo Castellano

Successful introduction of therapeutic genes into the central nervous system (CNS) requires the further development of efficient transfer vehicles that avoid viral vector-dependent adverse reactions while maintaining high transfection efficiency. The multifunctional protein 249AL was recently constructed for in vitro gene delivery. Here, we explore the capability of this vector for in vivo gene delivery to the postnatal rat CNS. Significant transgene expression was observed both in the excitotoxically injured and noninjured brain after intracortical injection of the DNA-contaning-249AL vector. In the injured brain, a widespread expression occurred in the entire lesioned area and retrograde transport of the vector toward distant thalamic nuclei and transgene expression were observed. Neurons, astrocytes, microglia, and endothelial cells expressed the transgene. No recruitment of leukocytes, demyelination, interleukin-1beta expression, or increase in astrocyte/microglial activation was observed at 6 days postinjection. In conclusion, the 249AL vector shows promising properties for gene therapy intervention in the CNS, including the targeting of different cell populations.

Collaboration


Dive into the Anna Arís's collaboration.

Top Co-Authors

Avatar

A. Bach

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Elena García-Fruitós

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Nuria González-Montalbán

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Andrea Vera

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Rosa María Ferraz

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Sandra Genís

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Berta González

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Laia Acarin

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

M. Mar Carrió

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge