Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Augustsson is active.

Publication


Featured researches published by Anna Augustsson.


Environmental Research | 2015

Metal uptake by homegrown vegetables : the relative importance in human health risk assessments at contaminated sites

Anna Augustsson; Terese Uddh-Söderberg; K. Johan Hogmalm; Monika Filipsson

Risk assessments of contaminated land often involve the use of generic bioconcentration factors (BCFs), which express contaminant concentrations in edible plant parts as a function of the concentration in soil, in order to assess the risks associated with consumption of homegrown vegetables. This study aimed to quantify variability in BCFs and evaluate the implications of this variability for human exposure assessments, focusing on cadmium (Cd) and lead (Pb) in lettuce and potatoes sampled around 22 contaminated glassworks sites. In addition, risks associated with measured Cd and Pb concentrations in soil and vegetable samples were characterized and a probabilistic exposure assessment was conducted to estimate the likelihood of local residents exceeding tolerable daily intakes. The results show that concentrations in vegetables were only moderately elevated despite high concentrations in soil, and most samples complied with applicable foodstuff legislation. Still, the daily intake of Cd (but not Pb) was assessed to exceed toxicological thresholds for about a fifth of the study population. Bioconcentration factors were found to vary more than indicated by previous studies, but decreasing BCFs with increasing metal concentrations in the soil can explain why the calculated exposure is only moderately affected by the choice of BCF value when generic soil guideline values are exceeded and the risk may be unacceptable.


Science of The Total Environment | 2015

An assessment of health risks associated with arsenic exposure via consumption of homegrown vegetables near contaminated glassworks sites

Terese Uddh-Söderberg; Sara Gunnarsson; K. Johan Hogmalm; M.I. Boel G. Lindegård; Anna Augustsson

The health risk posed by arsenic in vegetables grown in private gardens near 22 contaminated glassworks sites was investigated in this study. Firstly, vegetable (lettuce and potato) and soil samples were collected and arsenic concentrations measured to characterize the arsenic uptake in the selected crops. Secondly, a probabilistic exposure assessment was conducted to estimate the average daily intake (ADIveg), which was then evaluated against toxicological reference values by the calculation of hazard quotients (HQs) and cancer risks (CRs). The results show that elevated arsenic concentrations in residential garden soils are mirrored by elevated concentrations in vegetables, and that consumption of these vegetables alone may result in an unacceptable cancer risk; the calculated reasonable maximum exposure, for example, corresponded to a cancer incidence 20 times higher than the stated tolerance limit. However, the characterization of risk depends to a great extent on which toxicological reference value is used for comparison, as well as how the exposure is determined. Based on the assumptions made in the present study, the threshold levels for chronic non-carcinogenic or acute effects were not exceeded, but the cancer risks indicated highlight the need for further exposure studies, as dietary intake involves more than just homegrown vegetables and total exposure is a function of more than just one exposure pathway. In addition, glassworks sites--and contaminated sites in general--contain multiple contaminants, affecting the final and total risk.


Environment International | 2014

Assessing the risk of an excess fluoride intake among Swedish children in households with private wells : Expanding static single-source methods to a probabilistic multi-exposure-pathway approach

Anna Augustsson; Tobias Berger

It is often assumed that water consumption is the major route of exposure for fluoride and analysis of water fluoride content is the most common approach for ensuring that the daily intake is not too high. In the present study, the risk of excess intake was characterized for children in households with private wells in Kalmar County, Sweden, where the natural geology shows local enrichments in fluorine. By comparing water concentrations with the WHO drinking water guideline (1.5 mg/L), it was found that 24% of the ca. 4800 sampled wells had a concentration above this limit, hence providing a figure for the number of children in the households concerned assessed to be at risk using this straightforward approach. The risk of an excess intake could, alternatively, also be characterized based on a tolerable daily intake (in this case the US EPA RfD of 0.06 mg/kg-day). The exposure to be evaluated was calculated using a probabilistic approach, where the variability in all exposure factors was considered, again for the same study population. The proportion of children assessed to be at risk after exposure from drinking water now increased to 48%, and when the probabilistic model was adjusted to also include other possible exposure pathways; beverages and food, ingestion of toothpaste, oral soil intake and dust inhalation, the number increased to 77%. Firstly, these results show how the risk characterization is affected by the basis of comparison. In this example, both of the reference values used are widely acknowledged. Secondly, it illustrates how much of the total exposure may be overlooked when only focusing on one exposure pathway, and thirdly, it shows the importance of considering the variability in all relevant pathways.


The Holocene | 2013

Effects of land use and climate change on erosion intensity and sediment geochemistry at Lake Lehmilampi, Finland:

Anna Augustsson; Marie-José Gaillard; Pasi Peltola; Florence Mazier; Bo Bergbäck; Timo Saarinen

This paper aims to evaluate the possible relationships between erosion intensity and changes in climate and land use during the past 5.5 cal. k years at Lake Lehmilampi, eastern Finland. In this study we compare a detailed geochemical sediment record with (1) forest and land use history inferred from the first pollen and charcoal records from Lake Lehmilampi, and (2) existing archaeological surveys and independent proxy-records of climate change in the study region. The physical and geochemical sediment parameters examined include grain size analysis data and 23 chemical elements, determined with four selective extractions and ICP-MS. There are indications of possible human impact in the lake catchment as early as the Neolithic period, c. 3000–2550 bc, but the first undisputable signs are dated to 1800–100 bc. Cereal pollen reappears at c. ad 1700 and increases rapidly until c. ad 1950. The Holocene Thermal Maximum, its end c. 2000 bc, and the ‘Medieval Climate Anomaly’ were major climate events that had a prominent effect on erosion intensity, while human impact was a more significant factor during the period 3000 bc–ad 800 and from ad 1500 onwards. Although signs of changes in erosion intensity found in the sediment were small in this small catchment, they were significant enough to have a clear impact on the fraction of potentially mobile element species. This fraction increases with decreasing erosion intensity, which is probably related to a higher degree of chemical weathering and leaching during periods of decreased erosion.


Science of The Total Environment | 2011

Climate change - an uncertainty factor in risk analysis of contaminated land

Anna Augustsson; Monika Filipsson; Tomas Öberg; Bo Bergbäck

Metals frequently occur at contaminated sites, where their potential toxicity and persistence require risk assessments that consider possible long-term changes. Changes in climate are likely to affect the speciation, mobility, and risks associated with metals. This paper provides an example of how the climate effect can be inserted in a commonly used exposure model, and how the exposure then changes compared to present conditions. The comparison was made for cadmium (Cd) exposure to 4-year-old children at a highly contaminated iron and steel works site in southeastern Sweden. Both deterministic and probabilistic approaches (through probability bounds analysis, PBA) were used in the exposure assessment. Potential climate-sensitive variables were determined by a literature review. Although only six of the total 39 model variables were assumed to be sensitive to a change in climate (groundwater infiltration, hydraulic conductivity, soil moisture, soil:water distribution, and two bioconcentration factors), the total exposure was clearly affected. For example, by altering the climate-sensitive variables in the order of 15% to 20%, the deterministic estimate of exposure increased by 27%. Similarly, the PBA estimate of the reasonable maximum exposure (RME, defined as the upper bound of the 95th percentile) increased by almost 20%. This means that sites where the exposure in present conditions is determined to be slightly below guideline values may in the future exceed these guidelines, and risk management decisions could thus be affected. The PBA, however, showed that there is also a possibility of lower exposure levels, which means that the changes assumed for the climate-sensitive variables increase the total uncertainty in the probabilistic calculations. This highlights the importance of considering climate as a factor in the characterization of input data to exposure assessments at contaminated sites. The variable with the strongest influence on the result was the soil:water distribution coefficient (Kd).


Science of The Total Environment | 2016

The risk of overestimating the risk-metal leaching to groundwater near contaminated glass waste deposits and exposure via drinking water.

Anna Augustsson; Uddh T. Söderberg; Jerker Jarsjö; Mats E. Åström; Bo Olofsson; Berit Balfors; Georgia Destouni

This study investigates metal contamination patterns and exposure to Sb, As, Ba, Cd and Pb via intake of drinking water in a region in southeastern Sweden where the production of artistic glass has resulted in a large number of contaminated sites. Despite high total concentrations of metals in soil and groundwater at the glassworks sites properties, all drinking water samples from households with private wells, located at a 30-640m distance from a glassworks site, were below drinking water criteria from the WHO for Sb, As, Ba and Cd. A few drinking water samples showed concentrations of Pb above the WHO guideline, but As was the only element found in concentrations that could result in human exposure near toxicological reference values. An efficient retention of metals in the natural soil close to the source areas, which results in a moderate impact on local drinking water, is implied. Firstly, by the lack of significant difference in metal concentrations when comparing households located upstream and downstream of the main waste deposits, and secondly, by the lack of correlation between the metal concentration in drinking water and distance to the nearest glassworks site. However, elevated Pb and Cd concentrations in drinking water around glassworks sites when compared to regional groundwater indicate that diffuse contamination of the soils found outside the glassworks properties, and not only the glass waste landfills, may have a significant impact on groundwater quality. We further demonstrate that different mobilization patterns apply to different metals. Regarding the need to use reliable data to assess drinking water contamination and human exposure, we finally show that the conservative modelling approaches that are frequently used in routine risk assessments may result in exposure estimates many times higher than those based on measured concentrations in the drinking water that is actually being used for consumption.


International Journal of Phytoremediation | 2016

Effect of Medicago sativa L. and compost on organic and inorganic pollutant removal from a mixed contaminated soil and risk assessment using ecotoxicological tests

Charlotte Marchand; William Hogland; Fabio Kaczala; Yahya Jani; Lilian Marchand; Anna Augustsson; Mohamed Hijri

ABSTRACT Several Gentle Remediation Options (GRO), e.g., plant-based options (phytoremediation), singly and combined with soil amendments, can be simultaneously efficient for degrading organic pollutants and either stabilizing or extracting trace elements (TEs). Here, a 5-month greenhouse trial was performed to test the efficiency of Medicago sativa L., singly and combined with a compost addition (30% w/w), to treat soils contaminated by petroleum hydrocarbons (PHC), Co and Pb collected at an auto scrap yard. After 5 months, total soil Pb significantly decreased in the compost-amended soil planted with M. sativa, but not total soil Co. Compost incorporation into the soil promoted PHC degradation, M. sativa growth and survival, and shoot Pb concentrations [3.8 mg kg−1 dry weight (DW)]. Residual risk assessment after the phytoremediation trial showed a positive effect of compost amendment on plant growth and earthworm development. The O2 uptake by soil microorganisms was lower in the compost-amended soil, suggesting a decrease in microbial activity. This study underlined the benefits of the phytoremediation option based on M. sativa cultivation and compost amendment for remediating PHC- and Pb-contaminated soils.


Journal of Industrial Ecology | 2017

Persistent Hazardous Waste and the Quest Toward a Circular Economy: The Example of Arsenic in Chromated Copper Arsenate–Treated Wood

Anna Augustsson; Louise Sörme; Anna Karlsson; Jennie Amneklev

The importance of a circular economy is today widely accepted and advocated, but among the challenges in achieving this, we find difficulties in the implementation of legislation and policies desig ...


Environment International | 2017

Challenges in assessing the health risks of consuming vegetables in metal-contaminated environments

Anna Augustsson; Terese Uddh-Söderberg; Monika Filipsson; Ingela Helmfrid; Marika Berglund; Helen Karlsson; Johan Hogmalm; Andreas Karlsson; Stina Alriksson

A great deal of research has been devoted to the characterization of metal exposure due to the consumption of vegetables from urban or industrialized areas. It may seem comforting that concentrations in crops, as well as estimated exposure levels, are often found to be below permissible limits. However, we show that even a moderate increase in metal accumulation in crops may result in a significant increase in exposure. We also highlight the importance of assessing exposure levels in relation to a regional baseline. We have analyzed metal (Pb, Cd, As) concentrations in nearly 700 samples from 23 different vegetables, fruits, berries and mushrooms, collected near 21 highly contaminated industrial sites and from reference sites. Metal concentrations generally complied with permissible levels in commercial food and only Pb showed overall higher concentrations around the contaminated sites. Nevertheless, probabilistic exposure assessments revealed that the exposure to all three metals was significantly higher in the population residing around the contaminated sites, for both low-, median- and high consumers. The exposure was about twice as high for Pb and Cd, and four to six times as high for As. Since vegetable consumption alone did not result in exposure above tolerable intakes, it would have been easy to conclude that there is no risk associated with consuming vegetables grown near the contaminated sites. However, when the increase in exposure is quantified, its potential significance is harder to dismiss - especially when considering that exposure via other routes may be elevated in a similar way.


Science of The Total Environment | 2018

Assessing toxicity of metal contaminated soil from glassworks sites with a battery of biotests

Marleena Hagner; Martin Romantschuk; Olli-Pekka Penttinen; A. Egfors; Charlotte Marchand; Anna Augustsson

The present study addresses toxicological properties of metal contaminated soils, using glassworks sites in south-eastern Sweden as study objects. Soil from five selected glassworks sites as well as from nearby reference areas were analysed for total and water-soluble metal concentrations and general geochemical parameters. A battery of biotests was then applied to assess the toxicity of the glassworks soil environments: a test of phytotoxicity with garden cress (Lepidium sativum); the BioTox™ test for toxicity to bacteria using Vibrio fischeri; and analyses of abundancies and biomass of nematodes and enchytraeids. The glassworks- and reference areas were comparable with respect to pH and the content of organic matter and nutrients (C, N, P), but total metal concentrations (Pb, As, Ba, Cd and Zn) were significantly higher at the former sites. Higher metal concentrations in the water-soluble fraction were also observed, even though these concentrations were low compared to the total ones. Nevertheless, toxicity of the glassworks soils was not detected by the two ex situ tests; inhibition of light emission by V. fischeri could not be seen, nor was an effect seen on the growth of L. sativum. A decrease in enchytraeid and nematode abundance and biomass was, however, observed for the landfill soils as compared to reference soils, implying in situ toxicity to soil-inhabiting organisms. The confirmation of in situ bioavailability and negative effects motivates additional studies of the risk posed to humans of the glassworks villages.

Collaboration


Dive into the Anna Augustsson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Berit Balfors

Royal Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge