Anna Bachmann
Bernhard Nocht Institute for Tropical Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anna Bachmann.
PLOS ONE | 2009
Anna Bachmann; Claudia Esser; Michaela Petter; Sabine Predehl; Vera von Kalckreuth; Stefan Schmiedel; Iris Bruchhaus; Egbert Tannich
Background To avoid spleen-dependent killing mechanisms parasite-infected erythrocytes (IE) of Plasmodium falciparum malaria patients have the capacity to bind to endothelial receptors. This binding also known as sequestration, is mediated by parasite proteins, which are targeted to the erythrocyte surface. Candidate proteins are those encoded by P. falciparum multicopy gene families, such as var, rif, stevor or PfMC-2TM. However, a direct in vivo proof of IE sequestration and expression of multicopy gene families is still lacking. Here, we report on the analysis of IE from a black African immigrant, who received the diagnosis of a malignant lymphoproliferative disorder and subsequently underwent splenectomy. Three weeks after surgery, the patient experienced clinical falciparum malaria with high parasitemia and circulating developmental parasite stages usually sequestered to the vascular endothelium such as late trophozoites, schizonts or immature gametocytes. Methodology/Principal Findings Initially, when isolated from the patient, the infected erythrocytes were incapable to bind to various endothelial receptors in vitro. Moreover, the parasites failed to express the multicopy gene families var, A-type rif and stevor but expression of B-type rif and PfMC-2TM genes were detected. In the course of in vitro cultivation, the parasites started to express all investigated multicopy gene families and concomitantly developed the ability to adhere to endothelial receptors such as CD36 and ICAM-1, respectively. Conclusion/Significance This case strongly supports the hypothesis that parasite surface proteins such as PfEMP1, A-type RIFIN or STEVOR are involved in interactions of infected erythrocytes with endothelial receptors mediating sequestration of mature asexual and immature sexual stages of P. falciparum. In contrast, multicopy gene families coding for B-type RIFIN and PfMC-2TM proteins may not be involved in sequestration, as these genes were transcribed in infected but not sequestered erythrocytes.
PLOS Pathogens | 2010
Pavel Dolezal; Michael J. Dagley; Maya Kono; Peter Wolynec; Vladimir A. Likić; Jung Hock Foo; Miroslava Šedinová; Jan Tachezy; Anna Bachmann; Iris Bruchhaus; Trevor Lithgow
Several essential biochemical processes are situated in mitochondria. The metabolic transformation of mitochondria in distinct lineages of eukaryotes created proteomes ranging from thousands of proteins to what appear to be a much simpler scenario. In the case of Entamoeba histolytica, tiny mitochondria known as mitosomes have undergone extreme reduction. Only recently a single complete metabolic pathway of sulfate activation has been identified in these organelles. The E. histolytica mitosomes do not produce ATP needed for the sulfate activation pathway and for three molecular chaperones, Cpn60, Cpn10 and mtHsp70. The already characterized ADP/ATP carrier would thus be essential to provide cytosolic ATP for these processes, but how the equilibrium of inorganic phosphate could be maintained was unknown. Finally, how the mitosomal proteins are translocated to the mitosomes had remained unclear. We used a hidden Markov model (HMM) based search of the E. histolytica genome sequence to discover candidate (i) mitosomal phosphate carrier complementing the activity of the ADP/ATP carrier and (ii) membrane-located components of the protein import machinery that includes the outer membrane translocation channel Tom40 and membrane assembly protein Sam50. Using in vitro and in vivo systems we show that E. histolytica contains a minimalist set up of the core import components in order to accommodate a handful of mitosomal proteins. The anaerobic and parasitic lifestyle of E. histolytica has produced one of the simplest known mitochondrial compartments of all eukaryotes. Comparisons with mitochondria of another amoeba, Dictystelium discoideum, emphasize just how dramatic the reduction of the protein import apparatus was after the loss of archetypal mitochondrial functions in the mitosomes of E. histolytica.
Infection and Immunity | 2008
Silvia Haase; Ana Cabrera; Christine Langer; Moritz Treeck; Nicole S. Struck; Susann Herrmann; Pascal W. T. C. Jansen; Iris Bruchhaus; Anna Bachmann; Suzana de Souza Dias; Alan F. Cowman; Hendrik G. Stunnenberg; Tobias Spielmann; Tim-Wolf Gilberger
ABSTRACT One of the key processes in the pathobiology of the malaria parasite is the invasion and subsequent modification of the human erythrocyte. In this complex process, an unknown number of parasite proteins are involved, some of which are leading vaccine candidates. The majority of the proteins that play pivotal roles in invasion are either stored in the apical secretory organelles or located on the surface of the merozoite, the invasive stage of the parasite. Using transcriptional and structural features of these known proteins, we performed a genomewide search that identified 49 hypothetical proteins with a high probability of being located on the surface of the merozoite or in the secretory organelles. Of these candidates, we characterized a novel leucine zipper-like protein in Plasmodium falciparum that is conserved in Plasmodium spp. This protein is expressed in late blood stages and localizes to the rhoptries of the parasite. We demonstrate that this Plasmodium sp.-specific protein has a high degree of conservation within field isolates and that it is refractory to gene knockout attempts and thus might play an important role in invasion.
Parasitology International | 2008
Frank Ebert; Anna Bachmann; Kumiko Nakada-Tsukui; Ina Hennings; Babette Drescher; Tomoyoshi Nozaki; Egbert Tannich; Iris Bruchhaus
Protozoan parasites of the genus Entamoeba possess a considerable number of cysteine peptidases (CPs), the function of most of these molecules for amoeba biology needs to be established. In order to determine whether CPs may play a role during Entamoeba stage conversion from trophozoites into cysts and vice versa, expression of cp genes was analysed in the reptilian parasite Entamoeba invadens, a model organism for studying Entamoeba cyst development. By homology search, 28 papain-like cp genes were identified in public E. invadens genome databases. For eight of these genes the expression profiles during stage conversion was determined. By Northern blot analysis, transcripts for eicp-a9, -b7, -b8 and -c2, respectively, were detected neither in trophozoites or cysts nor at any of the point of times analysed during stage conversion. On the other hand, eicp-a5 is constitutively expressed during all developmental stages, whereas eicp-a3 and eicp-a11, respectively, are trophozoite-specific. Only eicp-b9 was found to be cyst-specific as it is expressed exclusively 18 to 28 h after cyst induction. Cyst-specific expression was confirmed by immunofluorescence microscopy of the corresponding protein EiCP-B9. In immature cysts, the molecule is located in structures that accumulate near the cyst wall, but which are uniformly distributed in mature cysts. The precise function of EiCP-B9 during Entamoeba encystation remains to be determined. However, colocalisation studies with an Entamoeba marker for autophagosomes suggest that EiCP-B9 is not associated with Entamoeba autophagy.
Cellular Microbiology | 2011
Anna Bachmann; Sabine Predehl; Jürgen May; Simone Harder; Gerd D. Burchard; Tim-Wolf Gilberger; Egbert Tannich; Iris Bruchhaus
Antigenic variation to fool the immune system is one of the molecular tricks Plasmodium uses to maintain infection in its human host. The exclusive expression of the surface‐exposed PfEMP1 molecules, encoded by var genes, is the best example for this. Central questions regarding the dynamics of antigenic variation, namely the rate of switching and the regulation of var gene expression in Plasmodium falciparum, are yet unanswered. To elucidate the in vivo situation, we studied var gene switching by analysing the var transcripts from parasites isolated from 20 non‐immune malaria patients as well as during subsequent in vitro generations. Parasites were found to be highly co‐ordinated as the whole population isolated from individual patients usually expressed only one dominant – preferentially group A –var gene. While some isolates have very low switching rates, others switched their var gene expression in every generation. However, during extended cultivation the co‐ordinated expression and switching is lost resulting in random expression of all var gene groups. Switching as observed on the RNA level was also supported on the protein level using PfEMP1‐specific antibodies. The results suggest that var genes switch in an ordered, hierarchical manner at much higher rates than previously described.
Malaria Journal | 2015
Anna Bachmann; Judith Scholz; Marthe Janßen; Mo-Quen Klinkert; Egbert Tannich; Iris Bruchhaus; Michaela Petter
BackgroundVariant surface antigens (VSA) exposed on the membrane of Plasmodium falciparum infected erythrocytes mediate immune evasion and are important pathogenicity factors in malaria disease. In addition to the well-studied PfEMP1, the small VSA families RIFIN, STEVOR and PfMC-2TM are assumed to play a role in this process.MethodsThis study presents a detailed comparative characterization of the localization, membrane topology and extraction profile across the life cycle of various members of these protein families employing confocal microscopy, immunoelectron microscopy and immunoblots.ResultsThe presented data reveal a clear association of variants of the RIFIN, STEVOR and PfMC-2TM proteins with the host cell membrane and topological studies indicate that the semi-conserved N-terminal region of RIFINs and some STEVOR proteins is exposed at the erythrocyte surface. At the Maurer’s clefts, the semi-conserved N-terminal region as well as the variable stretch of RIFINs appears to point to the lumen away from the erythrocyte cytoplasm. These results challenge the previously proposed two transmembrane topology model for the RIFIN and STEVOR protein families and suggest that only one hydrophobic region spans the membrane. In contrast, PfMC-2TM proteins indeed seem to be anchored by two hydrophobic stretches in the host cell membrane exposing just a few, variable amino acids at the surface of the host cell.ConclusionTogether, the host cell surface exposure and topology of RIFIN and STEVOR proteins suggests members of these protein families may indeed be involved in immune evasion of the infected erythrocyte, whereas members of the PfMC-2TM family seem to bear different functions in parasite biology.
PLOS ONE | 2012
Anna Bachmann; Michaela Petter; Ann-Kathrin Tilly; Laura Biller; Karin A. Uliczka; Michael F. Duffy; Egbert Tannich; Iris Bruchhaus
Avoidance of antibody-mediated immune recognition allows parasites to establish chronic infections and enhances opportunities for transmission. The human malaria parasite Plasmodium falciparum possesses a number of multi-copy gene families, including var, rif, stevor and pfmc-2tm, which encode variant antigens believed to be expressed on the surfaces of infected erythrocytes. However, most studies of these antigens are based on in vitro analyses of culture-adapted isolates, most commonly the laboratory strain 3D7, and thus may not be representative of the unique challenges encountered by P. falciparum in the human host. To investigate the expression of the var, rif-A, rif-B, stevor and pfmc-2tm family genes under conditions that mimic more closely the natural course of infection, ex vivo clinical P. falciparum isolates were analyzed using a novel quantitative real-time PCR approach. Expression patterns in the clinical isolates at various time points during the first intraerythrocytic developmental cycle in vitro were compared to those of strain 3D7. In the clinical isolates, in contrast to strain 3D7, there was a peak of expression of the multi-copy gene families rif-A, stevor and pfmc-2tm at the young ring stage, in addition to the already known expression peak in trophozoites. Furthermore, most of the variant surface antigen families were overexpressed in the clinical isolates relative to 3D7, with the exception of the pfmc-2tm family, expression of which was higher in 3D7 parasites. Immunofluorescence analyses performed in parallel revealed two stage-dependent localization patterns of RIFIN, STEVOR and PfMC-2TM. Proteins were exported into the infected erythrocyte at the young trophozoite stage, whereas they remained inside the parasite membrane during schizont stage and were subsequently observed in different compartments in the merozoite. These results reveal a complex pattern of expression of P. falciparum multi-copy gene families during clinical progression and are suggestive of diverse functional roles of the respective proteins.
Cellular Microbiology | 2014
Claudia Esser; Anna Bachmann; Daniela Kuhn; Kathrin Schuldt; Birgit Förster; Meike Thiel; Jürgen May; Friedrich Koch-Nolte; María Yáñez-Mó; Francisco Sánchez-Madrid; Alfred H. Schinkel; Sirpa Jalkanen; Alister Craig; Iris Bruchhaus; Rolf D. Horstmann
The adhesion of infected red blood cells (iRBCs) to human endothelium is considered a key event in the pathogenesis of cerebral malaria and other life‐threatening complications caused by the most prevalent malaria parasite Plasmodium falciparum. In the past 30 years, 14 endothelial receptors for iRBCs have been identified. Exposing 10 additional surface proteins of endothelial cells to a mixture of P. falciparum isolates from three Ghanaian malaria patients, we identified seven new iRBC receptors, all expressed in brain vessels. This finding strongly suggests that endothelial binding of P. falciparum iRBCs is promiscuous and may use a combination of endothelial surface moieties.
PLOS Pathogens | 2016
Anna Bachmann; Michaela Petter; Ralf Krumkamp; Meral Esen; Jana Held; Judith Scholz; Tao Li; B. Kim Lee Sim; Stephen L. Hoffman; Peter G. Kremsner; Benjamin Mordmüller; Michael F. Duffy; Egbert Tannich
Virulence of the most deadly malaria parasite Plasmodium falciparum is linked to the variant surface antigen PfEMP1, which is encoded by about 60 var genes per parasite genome. Although the expression of particular variants has been associated with different clinical outcomes, little is known about var gene expression at the onset of infection. By analyzing controlled human malaria infections via quantitative real-time PCR, we show that parasite populations from 18 volunteers expressed virtually identical transcript patterns that were dominated by the subtelomeric var gene group B and, to a lesser extent, group A. Furthermore, major changes in composition and frequency of var gene transcripts were detected between the parental parasite culture that was used to infect mosquitoes and Plasmodia recovered from infected volunteers, suggesting that P. falciparum resets its var gene expression during mosquito passage and starts with the broad expression of a specific subset of var genes when entering the human blood phase.
Blood | 2016
Bernina Naissant; Florian Dupuy; Yoann Duffier; Audrey Lorthiois; Julien Duez; Judith Scholz; Pierre A. Buffet; Anaïs Merckx; Anna Bachmann; Catherine Lavazec
Deformability of Plasmodium falciparum gametocyte-infected erythrocytes (GIEs) allows them to persist for several days in blood circulation and to ensure transmission to mosquitoes. Here, we investigate the mechanism by which the parasite proteins STEVOR (SubTElomeric Variable Open Reading frame) exert changes on GIE deformability. Using the microsphiltration method, immunoprecipitation, and mass spectrometry, we produce evidence that GIE stiffness is dependent on the cytoplasmic domain of STEVOR that interacts with ankyrin complex at the erythrocyte skeleton. Moreover, we show that GIE deformability is regulated by protein kinase A (PKA)-mediated phosphorylation of the STEVOR C-terminal domain at a specific serine residue (S324). Finally, we show that the increase of GIE stiffness induced by sildenafil (Viagra) is dependent on STEVOR phosphorylation status and on another independent mechanism. These data provide new insights into mechanisms by which phosphodiesterase inhibitors may block malaria parasite transmission.