Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Bandurska-Luque is active.

Publication


Featured researches published by Anna Bandurska-Luque.


International Journal of Radiation Oncology Biology Physics | 2015

Identification of Patient Benefit From Proton Therapy for Advanced Head and Neck Cancer Patients Based on Individual and Subgroup Normal Tissue Complication Probability Analysis

Annika Jakobi; Anna Bandurska-Luque; Kristin Stützer; Robert Haase; Steffen Löck; Linda-Jacqueline Wack; David Mönnich; Daniela Thorwarth; Damien Perez; Armin Lühr; Daniel Zips; Mechthild Krause; Michael Baumann; Rosalind Perrin; Christian Richter

PURPOSE The purpose of this study was to determine, by treatment plan comparison along with normal tissue complication probability (NTCP) modeling, whether a subpopulation of patients with head and neck squamous cell carcinoma (HNSCC) could be identified that would gain substantial benefit from proton therapy in terms of NTCP. METHODS AND MATERIALS For 45 HNSCC patients, intensity modulated radiation therapy (IMRT) was compared to intensity modulated proton therapy (IMPT). Physical dose distributions were evaluated as well as the resulting NTCP values, using modern models for acute mucositis, xerostomia, aspiration, dysphagia, laryngeal edema, and trismus. Patient subgroups were defined based on primary tumor location. RESULTS Generally, IMPT reduced the NTCP values while keeping similar target coverage for all patients. Subgroup analyses revealed a higher individual reduction of swallowing-related side effects by IMPT for patients with tumors in the upper head and neck area, whereas the risk reduction of acute mucositis was more pronounced in patients with tumors in the larynx region. More patients with tumors in the upper head and neck area had a reduction in NTCP of more than 10%. CONCLUSIONS Subgrouping can help to identify patients who may benefit more than others from the use of IMPT and, thus, can be a useful tool for a preselection of patients in the clinic where there are limited PT resources. Because the individual benefit differs within a subgroup, the relative merits should additionally be evaluated by individual treatment plan comparisons.


Acta Oncologica | 2015

NTCP reduction for advanced head and neck cancer patients using proton therapy for complete or sequential boost treatment versus photon therapy.

Annika Jakobi; Kristin Stützer; Anna Bandurska-Luque; Steffen Löck; Robert Haase; Linda-Jacqueline Wack; David Mönnich; Daniel Thorwarth; Damien Perez; Armin Lühr; Daniel Zips; Mechthild Krause; Michael Baumann; Rosalind Perrin; Christian Richter

ABSTRACT Background. To determine by treatment plan comparison differences in toxicity risk reduction for patients with head and neck squamous cell carcinoma (HNSCC) from proton therapy either used for complete treatment or sequential boost treatment only. Materials and methods. For 45 HNSCC patients, intensity-modulated photon (IMXT) and proton (IMPT) treatment plans were created including a dose escalation via simultaneous integrated boost with a one-step adaptation strategy after 25 fractions for sequential boost treatment. Dose accumulation was performed for pure IMXT treatment, pure IMPT treatment and for a mixed modality treatment with IMXT for the elective target followed by a sequential boost with IMPT. Treatment plan evaluation was based on modern normal tissue complication probability (NTCP) models for mucositis, xerostomia, aspiration, dysphagia, larynx edema and trismus. Individual NTCP differences between IMXT and IMPT (∆NTCPIMXT-IMPT) as well as between IMXT and the mixed modality treatment (∆NTCPIMXT-Mix) were calculated. Results. Target coverage was similar in all three scenarios. NTCP values could be reduced in all patients using IMPT treatment. However, ∆NTCPIMXT-Mix values were a factor 2–10 smaller than ∆NTCPIMXT-IMPT. Assuming a threshold of ≥ 10% NTCP reduction in xerostomia or dysphagia risk as criterion for patient assignment to IMPT, less than 15% of the patients would be selected for a proton boost, while about 50% would be assigned to pure IMPT treatment. For mucositis and trismus, ∆NTCP ≥ 10% occurred in six and four patients, respectively, with pure IMPT treatment, while no such difference was identified with the proton boost. Conclusions. The use of IMPT generally reduces the expected toxicity risk while maintaining good tumor coverage in the examined HNSCC patients. A mixed modality treatment using IMPT solely for a sequential boost reduces the risk by 10% only in rare cases. In contrast, pure IMPT treatment may be reasonable for about half of the examined patient cohort considering the toxicities xerostomia and dysphagia, if a feasible strategy for patient anatomy changes is implemented.


Radiotherapy and Oncology | 2017

Residual tumour hypoxia in head-and-neck cancer patients undergoing primary radiochemotherapy, final results of a prospective trial on repeat FMISO-PET imaging

Steffen Löck; Rosalind Perrin; Annekatrin Seidlitz; Anna Bandurska-Luque; Sebastian Zschaeck; Klaus Zöphel; Mechthild Krause; Jörg Steinbach; Jörg Kotzerke; Daniel Zips; E.G.C. Troost; Michael Baumann

BACKGROUND Hypoxia is a well recognised parameter of tumour resistance to radiotherapy, a number of anticancer drugs and potentially immunotherapy. In a previously published exploration cohort of 25 head and neck squamous cell carcinoma (HNSCC) patients on [18F]fluoromisonidazole positron emission tomography (FMISO-PET) we identified residual tumour hypoxia during radiochemotherapy, not before start of treatment, as the driving mechanism of hypoxia-mediated therapy resistance. Several quantitative FMISO-PET parameters were identified as potential prognostic biomarkers. Here we present the results of the prospective validation cohort, and the overall results of the study. METHODS FMISO-PET/CT images of further 25 HNSCC patients were acquired at four time-points before and during radiochemotherapy (RCHT). Peak standardised uptake value, tumour-to-background ratio, and hypoxic volume were analysed. The impact of the potential prognostic parameters on loco-regional tumour control (LRC) was validated by the concordance index (ci) using univariable and multivariable Cox models based on the exploration cohort. Log-rank tests were employed to compare the endpoint between risk groups. RESULTS The two cohorts differed significantly in several baseline parameters, e.g., tumour volume, hypoxic volume, HPV status, and intercurrent death. Validation was successful for several FMISO-PET parameters and showed the highest performance (ci=0.77-0.81) after weeks 1 and 2 of treatment. Cut-off values for the FMISO-PET parameters could be validated after week 2 of RCHT. Median values for the residual hypoxic volume, defined as the ratio of the hypoxic volume in week 2 of RCHT and at baseline, stratified patients into groups of significantly different LRC when applied to the respective other cohort. CONCLUSION Our study validates that residual tumour hypoxia during radiochemotherapy is a major driver of therapy resistance of HNSCC, and that hypoxia after the second week of treatment measured by FMISO-PET may serve as biomarker for selection of patients at high risk of loco-regional recurrence after state-of-the art radiochemotherapy.


Frontiers in Oncology | 2015

Increase in Tumor Control and Normal Tissue Complication Probabilities in Advanced Head-and-Neck Cancer for Dose-Escalated Intensity-Modulated Photon and Proton Therapy

Annika Jakobi; Armin Lühr; Kristin Stützer; Anna Bandurska-Luque; Steffen Löck; Mechthild Krause; Michael Baumann; Rosalind Perrin; Christian Richter

Introduction Presently used radiochemotherapy regimens result in moderate local control rates for patients with advanced head-and-neck squamous cell carcinoma (HNSCC). Dose escalation (DE) may be an option to improve patient outcome, but may also increase the risk of toxicities in healthy tissue. The presented treatment planning study evaluated the feasibility of two DE levels for advanced HNSCC patients, planned with either intensity-modulated photon therapy (IMXT) or proton therapy (IMPT). Materials and methods For 45 HNSCC patients, IMXT and IMPT treatment plans were created including DE via a simultaneous integrated boost (SIB) in the high-risk volume, while maintaining standard fractionation with 2 Gy per fraction in the remaining target volume. Two DE levels for the SIB were compared: 2.3 and 2.6 Gy. Treatment plan evaluation included assessment of tumor control probabilities (TCP) and normal tissue complication probabilities (NTCP). Results An increase of approximately 10% in TCP was estimated between the DE levels. A pronounced high-dose rim surrounding the SIB volume was identified in IMXT treatment. Compared to IMPT, this extra dose slightly increased the TCP values and to a larger extent the NTCP values. For both modalities, the higher DE level led only to a small increase in NTCP values (mean differences <2%) in all models, except for the risk of aspiration, which increased on average by 8 and 6% with IMXT and IMPT, respectively, but showed a considerable patient dependence. Conclusion Both DE levels appear applicable to patients with IMXT and IMPT since all calculated NTCP values, except for one, increased only little for the higher DE level. The estimated TCP increase is of relevant magnitude. The higher DE schedule needs to be investigated carefully in the setting of a prospective clinical trial, especially regarding toxicities caused by high local doses that lack a sound dose–response description, e.g., ulcers.


Journal of Applied Clinical Medical Physics | 2017

Potential proton and photon dose degradation in advanced head and neck cancer patients by intratherapy changes

Kristin Stützer; Annika Jakobi; Anna Bandurska-Luque; Steffen Barczyk; Carolin Arnsmeyer; Steffen Löck; Christian Richter

Abstract Purpose Evaluation of dose degradation by anatomic changes for head‐and‐neck cancer (HNC) intensity‐modulated proton therapy (IMPT) relative to intensity‐modulated photon therapy (IMRT) and identification of potential indicators for IMPT treatment plan adaptation. Methods For 31 advanced HNC datasets, IMPT and IMRT plans were recalculated on a computed tomography scan (CT) taken after about 4 weeks of therapy. Dose parameter changes were determined for the organs at risk (OARs) spinal cord, brain stem, parotid glands, brachial plexus, and mandible, for the clinical target volume (CTV) and the healthy tissue outside planning target volume (PTV). Correlation of dose degradation with target volume changes and quality of rigid CT matching was investigated. Results Recalculated IMPT dose distributions showed stronger degradation than the IMRT doses. OAR analysis revealed significant changes in parotid median dose (IMPT) and near maximum dose (D 1ml) of spinal cord (IMPT, IMRT) and mandible (IMPT). OAR dose parameters remained lower in IMPT cases. CTV coverage (V 95%) and overdose (V 107%) deteriorated for IMPT plans to (93.4 ± 5.4)% and (10.6 ± 12.5)%, while those for IMRT plans remained acceptable. Recalculated plans showed similarly decreased PTV conformity, but considerable hotspots, also outside the PTV, emerged in IMPT cases. Lower CT matching quality was significantly correlated with loss of PTV conformity (IMPT, IMRT), CTV homogeneity and coverage (IMPT). Target shrinkage correlated with increased dose in brachial plexus (IMRT, IMPT), hotspot generation outside the PTV (IMPT) and lower PTV conformity (IMRT). Conclusions The study underlines the necessity of precise positioning and monitoring of anatomy changes, especially in IMPT which might require adaptation more often. Since OAR doses remained typically below constraints, IMPT plan adaptation will be indicated by target dose degradations.


Radiotherapy and Oncology | 2018

FMISO-PET-based lymph node hypoxia adds to the prognostic value of tumor only hypoxia in HNSCC patients

Anna Bandurska-Luque; Steffen Löck; Robert Haase; Christian Richter; Klaus Zöphel; Nasreddin Abolmaali; Annekatrin Seidlitz; Steffen Appold; Mechthild Krause; Jörg Steinbach; Jörg Kotzerke; Daniel Zips; Michael Baumann; E.G.C. Troost

PURPOSE This secondary analysis of the prospective study on repeat [18F]fluoromisonidazole (FMISO)-PET in patients with locally advanced head and neck squamous cell carcinomas (HNSCC) assessed the prognostic value of synchronous hypoxia in primary tumor (Tu) and lymph node metastases (LN), and evaluated whether the combined reading was of higher prognostic value than that of primary tumor hypoxia only. METHODS This analysis included forty-five LN-positive HNSCC patients. FMISO-PET/CTs were performed at baseline, weeks 1, 2 and 5 of radiochemotherapy. Based on a binary scale, Tu and LN were categorized as hypoxic or normoxic, and two prognostic parameters were defined: Tu-hypoxia (independent of the LN oxygenation status) and synchronous Tu-and-LN-hypoxia. In fifteen patients with large LN (N = 21), additional quantitative analyses of FMISO-PET/CTs were performed. Imaging parameters at different time-points were correlated to the endpoints, i.e., locoregional control (LRC), local control (LC), regional control (RC) and time to progression (TTP). Survival curves were estimated using the cumulative incidence function. Univariable and multivariable Cox regression was used to evaluate the prognostic impact of hypoxia on the endpoints. RESULTS Synchronous Tu-and-LN-hypoxia was a strong adverse prognostic factor for LC, LRC and TTP at any of the four time-points (p ≤ 0.004), whereas Tu-hypoxia only was significantly associated with poor LC and LRC in weeks 2 and 5 (p ≤ 0.047), and with TTP in week 1 (p = 0.046). The multivariable analysis confirmed the prognostic value of synchronous Tu-and-LN-hypoxia regarding LRC (HR = 14.8, p = 0.017). The quantitative FMISO-PET/CT parameters correlated with qualitative hypoxia scale and RC (p < 0.001, p ≤ 0.033 at week 2, respectively). CONCLUSIONS This secondary analysis suggests that combined reading of primary tumor and LN hypoxia adds to the prognostic information of FMSIO-PET in comparison to primary tumor assessment alone in particular prior and early during radiochemotherapy. Confirmation in ongoing trials is needed before using this marker for personalized radiation oncology.


Zeitschrift Fur Medizinische Physik | 2017

Modeling tumor control probability for spatially inhomogeneous risk of failure based on clinical outcome data

Armin Lühr; Steffen Löck; Annika Jakobi; Kristin Stützer; Anna Bandurska-Luque; Ivan R. Vogelius; W. Enghardt; Michael Baumann; Mechthild Krause

PURPOSE Objectives of this work are (1) to derive a general clinically relevant approach to model tumor control probability (TCP) for spatially variable risk of failure and (2) to demonstrate its applicability by estimating TCP for patients planned for photon and proton irradiation. METHODS AND MATERIALS The approach divides the target volume into sub-volumes according to retrospectively observed spatial failure patterns. The product of all sub-volume TCPi values reproduces the observed TCP for the total tumor. The derived formalism provides for each target sub-volume i the tumor control dose (D50,i) and slope (γ50,i) parameters at 50% TCPi. For a simultaneous integrated boost (SIB) prescription for 45 advanced head and neck cancer patients, TCP values for photon and proton irradiation were calculated and compared. The target volume was divided into gross tumor volume (GTV), surrounding clinical target volume (CTV), and elective CTV (CTVE). The risk of a local failure in each of these sub-volumes was taken from the literature. RESULTS Convenient expressions for D50,i and γ50,i were provided for the Poisson and the logistic model. Comparable TCP estimates were obtained for photon and proton plans of the 45 patients using the sub-volume model, despite notably higher dose levels (on average +4.9%) in the low-risk CTVE for photon irradiation. In contrast, assuming a homogeneous dose response in the entire target volume resulted in TCP estimates contradicting clinical experience (the highest failure rate in the low-risk CTVE) and differing substantially between photon and proton irradiation. CONCLUSIONS The presented method is of practical value for three reasons: It (a) is based on empirical clinical outcome data; (b) can be applied to non-uniform dose prescriptions as well as different tumor entities and dose-response models; and (c) is provided in a convenient compact form. The approach may be utilized to target spatial patterns of local failures observed in patient cohorts by prescribing different doses to different target regions. Its predictive power depends on the uncertainty of the employed established TCP parameters D50 and γ50 and to a smaller extent on that of the clinically observed pattern of failure risk.


Radiotherapy and Oncology | 2016

OC-0262: Comparison of machine-learning methods for predictive radiomic models in locally advanced HNSCC

Stefan Leger; Anna Bandurska-Luque; Karoline Pilz; Klaus Zöphel; Michael Baumann; E.G.C. Troost; Steffen Löck; Christian Richter


Radiotherapy and Oncology | 2018

OC-0269: Comparison of tumour hypoxia measured by FMISO-PET and gene signatures for patients with HNSCC

Steffen Löck; Annett Linge; Annekatrin Seidlitz; Anna Bandurska-Luque; M. Großer; Gustavo Baretton; Klaus Zöphel; D. Zips; E.G.C. Troost; Mechthild Krause; M. Baumann


Radiotherapy and Oncology | 2015

PO-0898: Identification of individual NTCP benefit of dose-escalated IMPT in advanced HNC patients

A. Jakobi; Anna Bandurska-Luque; Kristin Stützer; Robert Haase; Steffen Löck; L. Wack; David Mönnich; Daniela Thorwarth; M. Kovacevic; D. Perez; Armin Lühr; D. Zips; Mechthild Krause; Michael Baumann; Rosalind Perrin; Christian Richter

Collaboration


Dive into the Anna Bandurska-Luque's collaboration.

Top Co-Authors

Avatar

Steffen Löck

Helmholtz-Zentrum Dresden-Rossendorf

View shared research outputs
Top Co-Authors

Avatar

Mechthild Krause

Helmholtz-Zentrum Dresden-Rossendorf

View shared research outputs
Top Co-Authors

Avatar

Michael Baumann

Helmholtz-Zentrum Dresden-Rossendorf

View shared research outputs
Top Co-Authors

Avatar

Christian Richter

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Kristin Stützer

Helmholtz-Zentrum Dresden-Rossendorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annika Jakobi

Helmholtz-Zentrum Dresden-Rossendorf

View shared research outputs
Top Co-Authors

Avatar

Armin Lühr

Helmholtz-Zentrum Dresden-Rossendorf

View shared research outputs
Top Co-Authors

Avatar

Klaus Zöphel

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Robert Haase

Dresden University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge