Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Barabasz is active.

Publication


Featured researches published by Anna Barabasz.


Journal of Experimental Botany | 2010

Metal accumulation in tobacco expressing Arabidopsis halleri metal hyperaccumulation gene depends on external supply

Anna Barabasz; Ute Krämer; Marc Hanikenne; Justyna Rudzka; Danuta Maria Antosiewicz

Engineering enhanced transport of zinc to the aerial parts of plants is a major goal in bio-fortification. In Arabidopsis halleri, high constitutive expression of the AhHMA4 gene encoding a metal pump of the P1B-ATPase family is necessary for both Zn hyperaccumulation and the full extent of Zn and Cd hypertolerance that are characteristic of this species. In this study, an AhHMA4 cDNA was introduced into N. tabacum var. Xanthi for expression under the control of its endogenous A. halleri promoter known to confer high and cell-type specific expression levels in both A. halleri and the non-hyperaccumulator A. thaliana. The transgene was expressed at similar levels in both roots and shoots upon long-term exposure to low Zn, control, and increased Zn concentrations. A down-regulation of AhHMA4 transcript levels was detected with 10 μM Zn resupply to tobacco plants cultivated in low Zn concentrations. In general, a transcriptional regulation of AhHMA4 in tobacco contrasted with the constitutively high expression previously observed in A. halleri. Differences in root/shoot partitioning of Zn and Cd between transgenic lines and the wild type were strongly dependent on metal concentrations in the hydroponic medium. Under low Zn conditions, an increased Zn accumulation in the upper leaves in the AhHMA4-expressing lines was detected. Moreover, transgenic plants exposed to cadmium accumulated less metal than the wild type. Both modifications of zinc and cadmium accumulation are noteworthy outcomes from the biofortification perspective and healthy food production. Expression of AhHMA4 may be useful in crops grown on soils poor in Zn.


Journal of Experimental Botany | 2014

HMA4 expression in tobacco reduces Cd accumulation due to the induction of the apoplastic barrier

Oskar Siemianowski; Anna Barabasz; Maria Kendziorek; Anna Ruszczyńska; Ewa Bulska; Lorraine E. Williams; Danuta Maria Antosiewicz

Ectopic expression in tobacco (Nicotiana tabacum v. Xanthi) of the export protein AtHMA4 (responsible in Arabidopsis for the control of Zn/Cd root to shoot translocation) resulted in decreased Cd uptake/accumulation in roots and shoots. This study contributes to understanding the mechanisms underlying this Cd-dependent phenotype to help predict the consequences of transgene expression for potential phytoremediation/biofortification-based strategies. Microarray analysis was performed to identify metal homeostasis genes that were differentially expressed in roots of Cd-exposed AtHMA4-expressing tobacco relative to the wild type. It was established that down-regulation of genes known to mediate Cd uptake was not responsible for reduced Cd uptake/accumulation in AtHMA4 transformants. The transcript levels of NtIRT1 and NtZIP1 were higher in transgenic plants, indicating an induction of the Fe and Zn deficiency status due to AtHMA4 expression. Interestingly, upon exposure to Cd, genes involved in cell wall lignification (NtHCT, NtOMET, and NtPrx11a) were up-regulated in transformants. Microscopic analysis of roots demonstrated that expression of AtHMA4 caused an induction of cell wall lignification in the external cell layers that was accompanied by enhanced H2O2 accumulation. Further study showed that the concentration of other elements (B, Co, Cu, Ni, Mo, and Zn) was reduced in AtHMA4 transformants in the presence of Cd. In conclusion, due to ectopic expression of 35S::AtHMA4, the physical apoplastic barrier within the external cell layer developed, which is likely to be responsible for the reduction of Cd uptake/accumulation.


Physiologia Plantarum | 2012

Metal response of transgenic tomato plantsexpressing P1B-ATPase

Anna Barabasz; Anna Wilkowska; Anna Ruszczyńska; Ewa Bulska; Marc Hanikenne; Magdalena Czarny; Ute Krämer; Danuta Maria Antosiewicz

Heterologous expression of HMA4 (P(1B) -ATPase) in plants is a useful strategy to engineer altered metal distribution in tissues for biofortification or phytoremediation purposes. This study contributes to understanding mechanisms underlying complex Zn-dependent phenotypes observed in transgenic plants and to better predict the consequences of transgene expression. Tomato was transformed with AhHMA4(p1) ::AhHMA4 from Arabidopsis halleri encoding the Zn export protein involved in xylem loading of Zn. Homozygous lines were tested for Zn tolerance, Zn and Fe concentrations in organs and in the apoplastic fluid, and for the expression of the transgene and tomato metal homeostasis endogenes. Expression of AhHMA4 facilitates root-to-shoot Zn translocation and induces Zn uptake in a Zn supply-dependent manner. Unexpectedly, it increases Zn excess-triggered Fe deficiency in leaves and transcriptional activation of Fe-uptake systems in roots. Moreover, AhHMA4 expression causes Zn overload of the apoplast, which may contribute to enhanced Zn sensitivity of transgenics and may lead to cell-wall remodeling. This study highlights that alteration of the apoplast/symplast Zn status through introduction of cellular Zn export activity via AhHMA4 may alter tomato metal homeostasis network, thus seems to be crucial in the generation of the phenotype of transgenic tomato.


Frontiers in Plant Science | 2014

Phenotypic and molecular consequences of overexpression of metal-homeostasis genes.

Danuta Maria Antosiewicz; Anna Barabasz; Oskar Siemianowski

Metal hyperaccumulating plants are able to store very large amounts of metals in their shoots. There are a number of reasons why it is important to be able to introduce metal hyperaccumulation traits into non-accumulating species (e.g., phytoremediation or biofortification in minerals) and to engineer a desired level of accumulation and distribution of metals. Metal homeostasis genes have therefore been used for these purposes. Engineered accumulation levels, however, have often been far from expected, and transgenic plants frequently display phenotypic features not related to the physiological function of the introduced gene. In this review, we focus on an aspect often neglected in research on plants expressing metal homeostasis genes: the specific regulation of endogenous metal homeostasis genes of the host plant in response to the transgene-induced imbalance of the metal status. These modifications constitute one of the major mechanisms involved in the generation of the plants phenotype, including unexpected characteristics. Interestingly, activation of so-called “metal cross-homeostasis” has emerged as a factor of primary importance.


Plant Cell and Environment | 2013

Development of Zn-related necrosis in tobacco is enhanced by expressing AtHMA4 and depends on the apoplastic Zn levels.

Oskar Siemianowski; Anna Barabasz; Aleksandra Weremczuk; Anna Ruszczyńska; Ewa Bulska; Lorraine E. Williams; Danuta Maria Antosiewicz

AtHMA4 was previously shown to contribute to the control of Zn root-to-shoot translocation and tolerance to high Zn. However, heterologous expression of 35S::AtHMA4 in tobacco (Nicotiana tabacum cv. Xanthi) results in enhanced Zn sensitivity. This study provides a better understanding of the development of this Zn-sensitive phenotype and demonstrates that substantial modifications of Zn homeostasis occur due to AtHMA4 expression. We show that ectopically expressing AtHMA4 in tobacco results in overloading the root and leaf apoplast with Zn. The tissue and cellular distribution of Zn, monitored using Zinpyr-1, was altered in the AtHMA4-expressing plants compared with wild type. Increased loading of the leaf apoplast with Zn in AtHMA4 transformants induced necrosis; this appeared at lower levels of Zn supply in the transgenics compared with wild type. This study suggests that Zn concentration may be sensed in the apoplast of leaves, and if concentrations are above a certain threshold then particular groups of cells accumulate Zn and necrosis is initiated. Therefore, this could be considered as a mechanism for protecting the other parts of the photosynthetically active leaf from Zn toxicity.


Journal of Plant Physiology | 2013

Expression of HvHMA2 in tobacco modifies Zn-Fe-Cd homeostasis.

Anna Barabasz; Anna Wilkowska; Katarzyna Tracz; Anna Ruszczyńska; Ewa Bulska; Rebecca F. Mills; Lorraine E. Williams; Danuta Maria Antosiewicz

HvHMA2 is a plasma membrane P1B-ATPase from barley that functions in Zn/Cd root-to-shoot transport. To assess the usefulness of HvHMA2 for modifying the metal content in aerial plant parts, it was expressed in tobacco under the CaMV35S promoter. Transformation with HvHMA2 did not produce one unique pattern of Zn and Cd accumulation; instead it depended on external metal supply. Thus Zn and Cd root-to-shoot translocation was facilitated, but not at all applied Zn/Cd concentrations. Metal uptake was restricted in HvHMA2-transformed plants and the level in the shoot was not enhanced. It was shown that HvHMA2 localizes to the plasma membrane of tobacco cells, and overloads the apoplast with Zn, which could explain the overall decrease in metal uptake observed. Despite the lower levels in the shoot, HvHMA2 transformants showed increased Zn sensitivity. Moreover, introduction of HvHMA2 into tobacco interfered with Fe metabolism and Fe accumulation was modified in HvHMA2-transformants in a Zn- and Cd-concentration dependent manner. The results indicate that ectopic expression of the export protein HvHMA2 in tobacco interferes with tobacco metal Zn-Cd-Fe cross-homeostasis, inducing internal mechanisms regulating metal uptake and tolerance.


Journal of Plant Physiology | 2014

Approach to engineer tomato by expression of AtHMA4 to enhance Zn in the aerial parts

Maria Kendziorek; Anna Barabasz; Justyna Rudzka; Katarzyna Tracz; Rebecca F. Mills; Lorraine E. Williams; Danuta Maria Antosiewicz

The aim of this work was to assess the potential for using AtHMA4 to engineer enhanced efficiency of Zn translocation to shoots, and to increase the Zn concentration in aerial tissues of tomato. AtHMA4, a P1B-ATPase, encodes a Zn export protein known to be involved in the control of Zn root-to-shoot translocation. In this work, 35S::AtHMA4 was expressed in tomato (Lycopersicon esculentum var. Beta). Wild-type and transgenic plants were tested for Zn and Cd tolerance; Zn, Fe and Cd accumulation patterns, and for the expression of endogenous Zn/Fe-homeostasis genes. At 10μM Zn exposure, a higher Zn concentration was observed in leaves of AtHMA4-expressing lines compared to wild-type, which is promising in terms of Zn biofortification. AtHMA4 also transports Cd and at 0.25μM Cd the transgenic plants showed similar levels of this element in leaves to wild-type but lower levels in roots, therefore indicating a reduction of Cd uptake due to AtHMA4 expression. Expression of this transgene AtHMA4 also resulted in distinct changes in Fe accumulation in Zn-exposed plants, and Fe/Zn-accumulation in Cd-exposed plants, even though Fe is not a substrate for AtHMA4. Analysis of the transcript abundance of key Zn/Fe-homeostasis genes showed that the pattern was distinct for transgenic and wild-type plants. The reduction of Fe accumulation observed in AtHMA4-transformants was accompanied by up-regulation of Fe-deficiency marker genes (LeFER, LeFRO1, LeIRT1), whereas down-regulation was detected in plants with the status of Fe-sufficiency. Furthermore, results strongly suggest the importance of the up-regulation of LeCHLN in the roots of AtHMA4-expressing plants for efficient translocation of Zn to the shoots. Thus, the modifications of Zn/Fe/Cd translocation to aerial plant parts due to AtHMA4 expression are closely related to the alteration of the endogenous Zn-Fe-Cd cross-homeostasis network of tomato.


Journal of Experimental Botany | 2016

The ratio of Zn to Cd supply as a determinant of metal-homeostasis gene expression in tobacco and its modulation by overexpressing the metal exporter AtHMA4

Anna Barabasz; Maria Klimecka; Maria Kendziorek; Aleksandra Weremczuk; Anna Ruszczyńska; Ewa Bulska; Danuta Maria Antosiewicz

Highlight Modifications of endogenous metal-homeostasis traits, in particular co-ordinated regulation of NtZIP1, NtZIP4, NtIRT1-like, and NtVTL, contribute to the generation of the phenotype of AtHMA4-expressing tobacco.


Frontiers in Plant Science | 2018

Contribution of NtZIP1-Like to the Regulation of Zn Homeostasis

Anna Papierniak; Katarzyna Kozak; Maria Kendziorek; Anna Barabasz; Małgorzata Palusińska; Jerzy Tiuryn; Bohdan Paterczyk; Lorraine E. Williams; Danuta Maria Antosiewicz

Tobacco has frequently been suggested as a candidate plant species for use in phytoremediation of metal contaminated soil but knowledge on the regulation of its metal-homeostasis is still in the infancy. To identify new tobacco metal transport genes that are involved in Zn homeostasis a bioinformatics study using the tobacco genome information together with expression analysis was performed. Ten new tobacco metal transport genes from the ZIP, NRAMP, MTP, and MRP/ABCC families were identified with expression levels in leaves that were modified by exposure to Zn excess. Following exposure to high Zn there was upregulation of NtZIP11-like, NtNRAMP3, three isoforms of NtMTP2, three MRP/ABCC genes (NtMRP5-like, NtMRP10-like, and NtMRP14 like) and downregulation of NtZIP1-like and NtZIP4. This suggests their involvement in several processes governing the response to Zn-related stress and in the efficiency of Zn accumulation (uptake, sequestration, and redistribution). Further detailed analysis of NtZIP1-like provided evidence that it is localized at the plasma membrane and is involved in Zn but not Fe and Cd transport. NtZIP1-like is expressed in the roots and shoots, and is regulated developmentally and in a tissue-specific manner. It is highly upregulated by Zn deficiency in the leaves and the root basal region but not in the root apical zone (region of maturation and absorption containing root hairs). Thus NtZIP1-like is unlikely to be responsible for Zn uptake by the root apical region but rather in the uptake by root cells within the already mature basal zone. It is downregulated by Zn excess suggesting it is involved in a mechanism to protect the root and leaf cells from accumulating excess Zn.


Water Air and Soil Pollution | 2016

Determination the Usefulness of AhHMA4p1::AhHMA4 Expression in Biofortification Strategies

Aleksandra Weremczuk; Anna Barabasz; Anna Ruszczyńska; Ewa Bulska; Danuta Maria Antosiewicz

AhHMA4 from Arabidopsis thaliana encodes Zn/Cd export protein that controls Zn/Cd translocation to shoots. The focus of this manuscript is the evaluation of AhHMA4 expression in tomato for mineral biofortification (more Zn and less Cd in shoots and fruits). Hydroponic and soil-based experiments were performed. Transgenic and wild-type plants were grown on two dilution levels of Knop’s medium (1/10, 1/2) with or without Cd, to determine if mineral composition affects the pattern of root/shoot partitioning of both metals due to AhHMA4 expression. Facilitation of Zn translocation to shoots of 19-day-old transgenic tomato was noted only when plants were grown in the more diluted medium. Moreover, the expression pattern of Zn-Cd-Fe cross-homeostasis genes (LeIRT1, LeChln, LeNRAMP1) was changed in transgenics in a medium composition-dependent fashion. In plants grown in soil (with/without Cd) up to maturity, expression of AhHMA4 resulted in more efficient translocation of Zn to shoots and restriction of Cd. These results indicate the usefulness of AhHMA4 expression to improve the growth of tomato on low-Zn soil, also contaminated with Cd.

Collaboration


Dive into the Anna Barabasz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge