Anna Blocki
National University of Singapore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anna Blocki.
Stem Cells and Development | 2013
Anna Blocki; Yingting Wang; Maria Koch; Priscilla Peh; Sebastian Beyer; Ping Law; James Hp Hui; Michael Raghunath
Pericytes play a crucial role in angiogenesis and vascular maintenance. They can be readily identified in vivo and isolated as CD146(+)CD34(-) cells from various tissues. Whether these and other markers reliably identify pericytes in vitro is unclear. CD146(+)CD34(-) selected cells exhibit multilineage potential. Thus, their perivascular location might represent a stem cell niche. This has spurred assumptions that not only all pericytes are mesenchymal stromal cells (MSCs), but also that all MSCs can act as pericytes. Considering this hypothesis, we developed functional assays by confronting test cells with endothelial cultures based on matrigel assay, spheroid sprouting, and cord formation. We calibrated these assays first with commercial cell lines [CD146(+)CD34(-) placenta-derived pericytes (Pl-Prc), bone marrow (bm)MSCs and fibroblasts]. We then functionally compared the angiogenic abilities of CD146(+)CD34(-)selected bmMSCs with CD146(-) selected bmMSCs from fresh human bm aspirates. We show here that only CD146(+)CD34(-) selected Pl-Prc and CD146(+)CD34(-) selected bmMSCs maintain endothelial tubular networks on matrigel and improve endothelial sprout morphology. CD146(-) selected bmMSCs neither showed these abilities, nor did they attain pericyte function despite progressive CD146 expression once passaged. Thus, cell culture conditions appear to influence expression of this and other reported pericyte markers significantly without correlation to function. The newly developed assays, therefore, promise to close a gap in the in vitro identification of pericytes via function. Indeed, our functional data suggest that pericytes represent a subpopulation of MSCs in bm with a specialized role in vascular biology. However, these functions are not inherent to all MSCs.
Advanced Drug Delivery Reviews | 2011
Clarice Chen; Felicia C. Loe; Anna Blocki; Yanxian Peng; Michael Raghunath
With the advent of multicellular organisms, the exterior of the cells evolved dramatically from highly aqueous surroundings into an extracellular matrix and space crowded with macromolecules. Cell-based therapies require removal of cells from their crowded physiological context and propagating them in dilute culture medium to attain therapeutically relevant numbers whilst preserving their phenotype. However, bereft of their microenvironment, cells under perform and lose functionality. Major efforts currently aim to modify cell culture surfaces and build three dimensional scaffolds to improve this situation. We discuss here alternative strategies that enable cells to re-create their own microenvironment in vitro, using carbohydrate-based macromolecules as culture media additives that create an excluded volume effect at defined fraction volume occupancies. This biophysical approach dramatically enhances extracellular matrix deposition by differentiated cells and stem cells, and boosts progenitor cell differentiation and proliferation. We begin to understand how well cells really can perform ex vivo if given the chance.
Soft Matter | 2012
Sebastian Beyer; Jianhao Bai; Anna Blocki; Chaitanya Kantak; Qianru Xue; Michael Raghunath; Dieter Trau
In the quest for greater control over biomacromolecular loading and higher encapsulation efficiencies for biomacromolecule loaded microcapsules we devised a novel approach employing water soluble sacrificial templates. In traditional layer by layer (LbL) methods, aqueous solutions of polyelectrolyte salts in combination with water insoluble sacrificial template materials are used to prepare polyelectrolyte microcapsules that can be loaded with biomacromolecules. Here, we replaced the aqueous phase with pure aliphatic alcohols (Reversed-Phase) to greatly enhance the retention of biomacromolecular cargo close to 100% during microcapsule preparation in this Reverse-Phase Layer by Layer (RP-LbL) process. Formation of stable multilayered polyelectrolyte membranes onto water soluble template materials by sequential deposition of polystyrenesulfonic acid (PSS) and polyallylamine (PA) from pure 1-butanol is reported for the first time. The challenge to exert control over the biomacromolecule concentration within the template material and the resulting microcapsules was addressed by sacrificial template materials. Sacrificial template materials are water soluble and comprise of biomacromolecules embedded into a matrix of small molecular weight molecules such as glucose. Control over the concentration of biomacromolecules in the template material and microcapsules is conveniently exerted by adjusting weight ratios of bimacromolecules to sacrificial template material. This approach is envisioned to be applied alternatively to traditional polyelectrolyte microcapsule preparation techniques in cases where minute losses of expensive biomacromolecules are unfavorable or when accurate control over biomacromolecule concentration is important.
Bioconjugate Chemistry | 2015
Priscilla Peh; Natalie Sheng Jie Lim; Anna Blocki; Stella Min Ling Chee; Heyjin Chris Park; Susan Liao; Casey K. Chan; Michael Raghunath
Blend emulsion electrospinning is widely perceived to destroy the bioactivity of proteins, and a blend emulsion of water-soluble and nonsoluble molecules is believed to be thermodynamically unstable to electrospin smoothly. Here we demonstrate a method to retain the bioactivity of disparate fragile biomolecules when electrospun. Using bovine serum albumin as a carrier protein; water-soluble vitamin C, fat soluble vitamin D3, steroid hormone hydrocortisone, peptide hormone insulin, thyroid hormone triiodothyronine (T3), and peptide epidermal growth factor (EGF) were simultaneously blend-spun into PLGA-collagen nanofibers. Upon release, vitamin C maintained the ability to facilitate Type I collagen secretion by fibroblasts, EGF stimulated skin fibroblast proliferation, and insulin potentiated adipogenic differentiation. Transgenic cell reporter assays confirmed the bioactivity of vitamin D3, T3, and hydrocortisone. These factors concertedly increased keratinocyte and fibroblast proliferation while maintaining keratinocyte basal state. This method presents an elegant solution to simultaneously deliver disparate bioactive biomolecules for wound healing applications.
Journal of Physical Chemistry B | 2015
Jean-Yves Dewavrin; Muhammed Abdurrahiem; Anna Blocki; Mrinal Musib; Francesco Piazza; Michael Raghunath
The competition for access to space that arises between macromolecules is the basis of the macromolecular crowding phenomenon, known to modulate biochemical reactions in subtle ways. Crowding is a highly conserved physiological condition in and around cells in metazoans, and originates from a mixture of heterogeneous biomolecules. Here, using collagen fibrillogenesis as an experimental test platform and ideas from the theory of nonideal solutions, we show that an entropy-based synergy is created by a mixture of two different populations of artificial crowders, providing small crowders with extra volume occupancy when in the vicinity of bigger crowders. We present the physiological mechanism by which synergistic effects maximize volume exclusion with the minimum amount of heterogeneous crowders, demonstrating how the evolutionarily optimized crowded conditions found in vivo can be reproduced effectively in vitro.
Molecular Therapy | 2015
Anna Blocki; Yingting Wang; Maria Koch; Anna Goralczyk; Sebastian Beyer; Nikita Agarwal; Michelle H.C. Lee; Shehzahdi S. Moonshi; Jean-Yves Dewavrin; Priscilla Peh; Herbert Schwarz; Kishore Bhakoo; Michael Raghunath
Autologous cells hold great potential for personalized cell therapy, reducing immunological and risk of infections. However, low cell counts at harvest with subsequently long expansion times with associated cell function loss currently impede the advancement of autologous cell therapy approaches. Here, we aimed to source clinically relevant numbers of proangiogenic cells from an easy accessible cell source, namely peripheral blood. Using macromolecular crowding (MMC) as a biotechnological platform, we derived a novel cell type from peripheral blood that is generated within 5 days in large numbers (10-40 million cells per 100 ml of blood). This blood-derived angiogenic cell (BDAC) type is of monocytic origin, but exhibits pericyte markers PDGFR-β and NG2 and demonstrates strong angiogenic activity, hitherto ascribed only to MSC-like pericytes. Our findings suggest that BDACs represent an alternative pericyte-like cell population of hematopoietic origin that is involved in promoting early stages of microvasculature formation. As a proof of principle of BDAC efficacy in an ischemic disease model, BDAC injection rescued affected tissues in a murine hind limb ischemia model by accelerating and enhancing revascularization. Derived from a renewable tissue that is easy to collect, BDACs overcome current short-comings of autologous cell therapy, in particular for tissue repair strategies.
Biomacromolecules | 2014
Rafi Rashid; Sebastian Beyer; Anna Blocki; Catherine Le Visage; Dieter Trau; Thorsten Wohland; Michael Raghunath
Mitochondria are key organelles organizing cellular metabolic flux. Therefore, a targeted drug delivery to mitochondria promises the advancement of medicine in fields that are associated with mitochondrial dysfunction. However, successful mitochondrial drug delivery is limited by complex transport steps across organelle membranes and fast drug efflux in cases of multidrug resistance. Strategies to deliver small-molecular-weight drugs to mitochondria are very limited, while the use of complex polymeric carriers is limited by a lack of clinical feasibility. We show here that clinically established macromolecules such as a sucrose copolymer (Ficoll 70/400 kDa) and polyglucose (dextran 70/500 kDa) are micropinocytosed swiftly by mesenchymal stem cells and subsequently routed to mitochondria. The intracellular level of Ficoll appears to decrease over time, suggesting that it does not persist within cells. After coupling to polysucrose, the low-molecular-weight photodynamic drug Rose Bengal reached mitochondria and thus exhibited an increased destructive potential after laser excitation. These findings support new opportunities to deliver already clinically approved drugs to mitochondria.
International Journal of Molecular Sciences | 2018
Sebastian Beyer; Maria Koch; Yie Lee; F. Jung; Anna Blocki
Successful vascularization is essential in wound healing, the histo-integration of biomaterials, and other aspects of regenerative medicine. We developed a functional in vitro assay to dissect the complex processes directing angiogenesis during wound healing, whereby vascular cell spheroids were induced to sprout in the presence of classically (M1) or alternatively (M2) activated macrophages. This simulated a microenvironment, in which sprouting cells were exposed to the inflammatory or proliferation phases of wound healing, respectively. We showed that M1 macrophages induced single-cell migration of endothelial cells and pericytes. In contrast, M2 macrophages augmented endothelial sprouting, suggesting that vascular cells infiltrate the wound bed during the inflammatory phase and extensive angiogenesis is initiated upon a switch to a predominance of M2. Interestingly, M1 and M2 shared a pro-angiogenic secretome, whereas pro-inflammatory cytokines were solely secreted by M1. These results suggested that acute inflammatory factors act as key inducers of vascular cell infiltration and as key negative regulators of angiogenesis, whereas pro-angiogenic factors are present throughout early wound healing. This points to inflammatory factors as key targets to modulate angiogenesis. The here-established wound healing assay represents a useful tool to investigate the effect of biomaterials and factors on angiogenesis during wound healing.
Clinical Hemorheology and Microcirculation | 2017
Anna Blocki; Farina Löper; Nino Chirico; Axel T. Neffe; F. Jung; Christof Stamm; Andreas Lendlein
Cell-based therapies often face the challenge of low cell retention and viability upon transplantation. Hence, biomaterials, which can immobilize transplanted cells, while at the same time support cell viability, are essential for successful clinical application. Noteworthy, biomaterials in the micrometer range such as microcapsules or microspheres have the advantage of a minimally invasive introduction into tissue.Hence, we established an approach to generate gelatin-based cell carriers in the form of microspherical hydrogels. Fibroblasts were microencapsulated in glycidylmethacrylate (GMA)-functionalized gelatin by photopolymerization. While the degree of GMA-functionalization was kept constant, the hydrogel cross-linking density was adjusted by varying the time of irradiation or the average gelatin-chain length.Stable microspheres were synthesized from 10 wt% GMA-gelatin solutions for all irradiation periods tested (0.5 -2 min). Evaluation of cell viability revealed that microgels with the same weight content of biopolymer but with decreased cross-linking densities and thus decreased storage and E modulus, resulted in best cell support. Noteworthy, encapsulated cells partially migrated out of the microspheres and attached to the spherical surface.10 wt% GMA-gelatin-based hydrogels with E moduli comparable to the native cellular niche proved to be a promising biomaterial suitable for the production of cell-laden microspheres and shall be evaluated further for biomedical application.
Biomaterials | 2015
Anna Blocki; Sebastian Beyer; Jean-Yves Dewavrin; Anna Goralczyk; Yingting Wang; Priscilla Peh; Michael Ng; Shehzahdi S. Moonshi; Susmitha Vuddagiri; Michael Raghunath; Eliana C. Martinez; Kishore Bhakoo