Anna C. C. Aguiar
Universidade Federal de Minas Gerais
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anna C. C. Aguiar.
Journal of Medicinal Chemistry | 2011
Núbia Boechat; Vitor F. Ferreira; Sabrina B. Ferreira; Maria de Lourdes G. Ferreira; Fernando de C. da Silva; Mônica M. Bastos; Marilia dos S. Costa; Maria Cristina S. Lourenço; Angelo C. Pinto; Antoniana U. Krettli; Anna C. C. Aguiar; Brunno M. Teixeira; Nathalia V. da Silva; Priscila R. C. Martins; Flávio A.F.M. Bezerra; Ane L. S. Camilo; Gerson P. da Silva; Carolina C. P. Costa
The purpose of this study was to prepare various 4-substituted N-phenyl-1,2,3-triazole derivatives using click chemistry. The derivatives were screened in vitro for antimicrobial activity against Mycobacterium tuberculosis strain H37Rv (ATCC 27294) using the Alamar Blue susceptibility test. The activity was expressed as the minimum inhibitory concentration (MIC) in μg/mL (μM). Derivatives of isoniazid (INH), (E)-N-[(1-aryl)-1H-1,2,3-triazole-4-yl)methylene] isonicotinoyl hydrazides, exhibited significant activity with MIC values ranging from 2.5 to 0.62 μg/mL. In addition, they displayed low cytotoxicity against liver cells (hepatoma HepG2) and kidney cells (BGM), thereby providing a high therapeutic index. The results demonstrated the potential and importance of developing new INH derivatives to treat mycobacterial infections.
Memorias Do Instituto Oswaldo Cruz | 2012
Anna C. C. Aguiar; Eliana Mm da Rocha; Nicolli Bellotti de Souza; Tanos Cc França; Antoniana U. Krettli
Malaria remains a major world health problem following the emergence and spread of Plasmodium falciparum that is resistant to the majority of antimalarial drugs. This problem has since been aggravated by a decreased sensitivity of Plasmodium vivax to chloroquine. This review discusses strategies for evaluating the antimalarial activity of new compounds in vitro and in animal models ranging from conventional tests to the latest high-throughput screening technologies. Antimalarial discovery approaches include the following: the discovery of antimalarials from natural sources, chemical modifications of existing antimalarials, the development of hybrid compounds, testing of commercially available drugs that have been approved for human use for other diseases and molecular modelling using virtual screening technology and docking. Using these approaches, thousands of new drugs with known molecular specificity and active against P. falciparum have been selected. The inhibition of haemozoin formation in vitro, an indirect test that does not require P. falciparum cultures, has been described and this test is believed to improve antimalarial drug discovery. Clinical trials conducted with new funds from international agencies and the participation of several industries committed to the eradication of malaria should accelerate the discovery of drugs that are as effective as artemisinin derivatives, thus providing new hope for the control of malaria.
Chemical Biology & Drug Design | 2014
Núbia Boechat; Maria de Lourdes G. Ferreira; Luiz C. S. Pinheiro; Antônio M.L. Jesus; Milene M.M. Leite; Carlos C. S. Júnior; Anna C. C. Aguiar; Isabel M de Andrade; Antoniana U. Krettli
Malaria is one of the most prevalent parasitic diseases in the world. The global importance of this disease, current vector control limitations, and the absence of an effective vaccine make the use of therapeutic antimalarial drugs the main strategy to control malaria. Chloroquine is a cost‐effective antimalarial drug with a relatively robust safety profile, or therapeutic index. However, chloroquine is no longer used alone to treat patients with Plasmodium falciparum due to the emergence and spread of chloroquine‐resistant strains, which have also been reported for Plasmodium vivax. However, the activity of 1,2,3‐triazole derivatives against chloroquine‐sensitive and chloroquine‐resistant strains of P. falciparum has been reported in the literature. To enhance the anti‐P. falciparum activity of quinoline derivatives, we synthesized 11 new quinoline‐1H‐1,2,3‐triazole hybrids with different substituents in the 4‐positions of the 1H‐1,2,3‐triazole ring, which were assayed against the W2‐chloroquine‐resistant P. falciparum clone. Six compounds exhibited activity against the P. falciparum W2 clone, chloroquine‐resistant, with IC50 values ranging from 1.4 to 46 μm. None of these compounds was toxic to a normal monkey kidney cell line, thus exhibiting good selectivity indexes, as high 351 for one compound (11).
Molecules | 2012
Núbia Boechat; Luiz C. S. Pinheiro; Thiago S. Silva; Anna C. C. Aguiar; Alcione S. de Carvalho; Mônica M. Bastos; Carolina C. P. Costa; Sergio Pinheiro; Angelo C. Pinto; Jorge S. Mendonça; Karen D. B. Dutra; Alessandra L. Valverde; Osvaldo A. Santos-Filho; Isabela Penna Cerávolo; Antoniana U. Krettli
According to the World Health Organization, half of the World’s population, approximately 3.3 billion people, is at risk for developing malaria. Nearly 700,000 deaths each year are associated with the disease. Control of the disease in humans still relies on chemotherapy. Drug resistance is a limiting factor, and the search for new drugs is important. We have designed and synthesized new 2-(trifluoromethyl)[1,2,4]triazolo[1,5-a]pyrimidine derivatives based on bioisosteric replacement of functional groups on the anti-malarial compounds mefloquine and amodiaquine. This approach enabled us to investigate the impact of: (i) ring bioisosteric replacement; (ii) a CF3 group substituted at the 2-position of the [1,2,4]triazolo[1,5-a]pyrimidine scaffold and (iii) a range of amines as substituents at the 7-position of the of heterocyclic ring; on in vitro activity against Plasmodium falciparum. According to docking simulations, the synthesized compounds are able to interact with P. falciparum dihydroorotate dehydrogenase (PfDHODH) through strong hydrogen bonds. The presence of a trifluoromethyl group at the 2-position of the [1,2,4]triazolo[1,5-a]pyrimidine ring led to increased drug activity. Thirteen compounds were found to be active, with IC50 values ranging from 0.023 to 20 µM in the anti-HRP2 and hypoxanthine assays. The selectivity index (SI) of the most active derivatives 5, 8, 11 and 16 was found to vary from 1,003 to 18,478.
PLOS ONE | 2012
Anna C. C. Aguiar; Raquel de Meneses Santos; Flávio Júnior Barbosa Figueiredo; Wilian A. Cortopassi; Andre Silva Pimentel; Tanos C. C. França; Mario R. Meneghetti; Antoniana U. Krettli
Chloroquine (CQ) is a cost effective antimalarial drug with a relatively good safety profile (or therapeutic index). However, CQ is no longer used alone to treat patients with Plasmodium falciparum due to the emergence and spread of CQ-resistant strains, also reported for P. vivax. Despite CQ resistance, novel drug candidates based on the structure of CQ continue to be considered, as in the present work. One CQ analog was synthesized as monoquinoline (MAQ) and compared with a previously synthesized bisquinoline (BAQ), both tested against P. falciparum in vitro and against P. berghei in mice, then evaluated in vitro for their cytotoxicity and ability to inhibit hemozoin formation. Their interactions with residues present in the NADH binding site of P falciparum lactate dehydrogenase were evaluated using docking analysis software. Both compounds were active in the nanomolar range evaluated through the HRPII and hypoxanthine tests. MAQ and BAQ derivatives were not toxic, and both compounds significantly inhibited hemozoin formation, in a dose-dependent manner. MAQ had a higher selectivity index than BAQ and both compounds were weak PfLDH inhibitors, a result previously reported also for CQ. Taken together, the two CQ analogues represent promising molecules which seem to act in a crucial point for the parasite, inhibiting hemozoin formation.
Malaria Journal | 2014
Anna C. C. Aguiar; Dhelio Batista Pereira; Nayra S. Amaral; Luiz De Marco; Antoniana U. Krettli
BackgroundChloroquine (CQ), a cost effective antimalarial drug with a relatively good safety profile and therapeutic index, is no longer used by itself to treat patients withu2009Plasmodium falciparum due to CQ-resistant strains. P. vivax, representing over 90% of malaria cases in Brazil, despite reported resistance, is treated with CQ as well as with primaquine to block malaria transmission and avoid late P. vivax malaria relapses. Resistance to CQ and other antimalarial drugs influences malaria control, thus monitoring resistance phenotype by parasite genotyping is helpful in endemic areas.MethodsA total of 47 P. vivax and nine P. falciparum fresh isolates were genetically characterized and tested for CQ, mefloquine (MQ) and artesunate (ART) susceptibilityu2009in vitro. The genes mdr1 and pfcrt, likely related to CQ resistance, were analyzed in all isolates. Drug susceptibility was determined using short-term parasite cultures of ring stages for 48 to 72 hour and thick blood smears counts. Each parasite isolate was tested with the antimalarials to measure the geometric mean of 50% inhibitory concentration.ResultsThe low numbers ofu2009P. falciparum isolates reflect the species prevalence in Brazil; most displayed low sensitivity to CQ (IC50 70 nM). However, CQ resistance was rare among P. vivax isolates (IC50 of 32 nM). The majority of P. vivax and P. falciparum isolates were sensitive to ART and MQ. One hundred percent of P. falciparum isolates carried non-synonymous mutations in the pfmdr1 gene in codons 184, 1042 and 1246, 84% in codons 1034 and none in codon 86, a well-known resistance mutation. For theu2009pfcrtu2009gene, mutations were observed in codons 72 and 76 in all P. falciparum isolates. One P. falciparum isolate from Angola, Africa, showing sensitivity to the antimalarials, presented no mutations. In P. vivax, mutations of pvmdr1 and the multidrug resistance gene 1 marker at codon F976 were absent.ConclusionAll P. falciparum Brazilian isolates showed CQ resistance and presented non-synonymous mutations in pfmdr1 and pfcrt. CQ resistant genotypes were not present among P. vivax isolates and the IC50 values were low in all samples of the Brazilian West Amazon.
Memorias Do Instituto Oswaldo Cruz | 2013
Julia Penna Coutinho; Anna C. C. Aguiar; Pierre Alexandre dos Santos; Joaquim Corsino Lima; Maria Gabrielle Lima Rocha; Carlos L. Zani; Tania Maria de Almeida Alves; Antônio Euzébio Goulart Sant'Ana; Maria de Meneses Pereira; Antoniana U. Krettli
Infusions of Aspidosperma nitidum (Apocynaceae) wood bark are used to treat fever and malaria in the Amazon Region. Several species of this family are known to possess indole alkaloids and other classes of secondary metabolites, whereas terpenoids, an inositol and the indole alkaloids harmane-3 acid and braznitidumine have been described in A. nitidum . In the present study, extracts from the wood bark, leaves and branches of this species were prepared for assays against malaria parasites and cytotoxicity testing using human hepatoma and normal monkey kidney cells. The wood bark extracts were active against Plasmodium falciparum and showed a low cytotoxicity in vitro, whereas the leaf and branch extracts and the pure alkaloid braznitidumine were inactive. A crude methanol extract was subjected to acid-base fractionation aimed at obtaining alkaloid-rich fractions, which were active at low concentrations against P. falciparum and in mice infected with and sensitive Plasmodium berghei parasites. Our data validate the antimalarial usefulness of A. nitidum wood bark, a remedy that can most likely help to control malaria. However, the molecules responsible for this antimalarial activity have not yet been identified. Considering their high selectivity index, the alkaloid-rich fractions from the plant bark might be useful in the development of new antimalarials.
Journal of Ethnopharmacology | 2015
Danilo Ribeiro de Oliveira; Antoniana U. Krettli; Anna C. C. Aguiar; Gilda Guimarães Leitão; Mn Vieira; Karine S. Martins; Suzana G. Leitão
ETHNOPHARMACOLOGICAL RELEVANCEnMalaria is the most important parasitic disease in the world, including in the Amazon region, due to its high incidence. In addition, malaria is difficult to control because of the geographical characteristics of the endemic Amazon region. The quilombola communities of Oriximina, located in remote rainforest areas, have extensive experience with medicinal plants due to their close contact with and dependence on local biodiversity as a therapeutic resource. To search for active bioproducts against malaria, based on in vitro tests using blood culture-derived parasites and plants selected by an ethno-directed approach in traditional quilombola communities of Oriximiná, in the Amazon region of Brazil.nnnMATERIALS AND METHODSnEthnobotanical data were collected from 35 informants in the quilombola communities of Oriximiná, Brazil, by a free-listing method for the survey of species locally indicated to be effective against malaria and related symptoms. Data were analyzed by salience index (S) and major use agreement. The activity of extracts from 11 plants, selected based on their Salience values (four plants with S>1; seven plants with S<0.1), was measured in vitro in cultures of W2 clone Plasmodium falciparum parasites resistant to chloroquine.nnnRESULTSnThirty-five ethnospecies comprising 40 different plants belonging to 23 botanical families and 37 genera were listed as antimalarials by the ethno-directed approach. Among these, 11 species selected based on their S values were assayed against P. falciparum. The most active plant extracts, with an IC50 as low as 1.6μg/mL, were obtained from Aspidosperma rigidum (Apocynaceae), Bertholletia excelsa (Lecythidaceae) and Simaba cedron (Simaroubaceae), all of which displayed an S value>1.nnnCONCLUSIONnA strong correlation between the consensus of the informants from quilombola communities living in a malaria endemic area and the salience index indicating antiplasmodial activity was observed, where the ethnospecies mostly cited to be effective against malaria produced the most active plant extracts in vitro. It was also evident from the data that these groups approached the treatment of malaria with an holistic view, making use of purgative, depurative, emetic and adaptogen plants.
PLOS ONE | 2014
Wilian A. Cortopassi; Julia Penna-Coutinho; Anna C. C. Aguiar; Andre Silva Pimentel; Camilla D. Buarque; Paulo R. R. Costa; Bruna R. M. Alves; Tanos C. C. França; Antoniana U. Krettli
DNA topoisomerase I from Plasmodium falciparum (PfTopoI), a potential selective target for chemotherapy and drug development against malaria, is used here, together with human Topo I (HssTopoI), for docking, molecular dynamics (MD) studies and experimental assays. Six synthetic isoflavonoid derivatives and the known PfTopoI inhibitors camptothecin and topotecan were evaluated in parallel. Theoretical results suggest that these compounds dock in the binding site of camptothecin and topotecan inside both enzymes and that LQB223 binds selectively in PfTopoI. In vitro tests against P. falciparum blood parasites corroborated the theoretical findings. The selectivity index (SI) of LQB223 ≥98 suggests that this molecule is the most promising in the group of compounds tested. In vivo experiments in mice infected with P. berghei showed that LQB223 has an antimalarial activity similar to that of chloroquine.
Memorias Do Instituto Oswaldo Cruz | 2015
Anna C. C. Aguiar; Ananda de Castro Cunha; Isabela Penna Cerávolo; Regina Aparecida Correia Gonçalves; Arildo José Braz de Oliveira; Antoniana U. Krettli
Several species of Aspidosperma plants are used to treat diseases in the tropics, including Aspidosperma ramiflorum, which acts against leishmaniasis, an activity that is experimentally confirmed. The species, known as guatambu-yellow, yellow peroba, coffee-peroba andmatiambu, grows in the Atlantic Forest of Brazil in the South to the Southeast regions. Through a guided biofractionation of A. ramiflorum extracts, the plant activity against Plasmodium falciparum was evaluated in vitro for toxicity towards human hepatoma G2 cells, normal monkey kidney cells and nonimmortalised human monocytes isolated from peripheral blood. Six of the seven extracts tested were active at low doses (half-maximal drug inhibitory concentration < 3.8 µg/mL); the aqueous extract was inactive. Overall, the plant extracts and the purified compounds displayed low toxicity in vitro. A nonsoluble extract fraction and one purified alkaloid isositsirikine (compound 5) displayed high selectivity indexes (SI) (= 56 and 113, respectively), whereas compounds 2 and 3 were toxic (SI < 10). The structure, activity and low toxicity of isositsirikine in vitro are described here for the first time in A. ramiflorum, but only the neutral and precipitate plant fractions were tested for activity, which caused up to 53% parasitaemia inhibition of Plasmodium berghei in mice with blood-induced malaria. This plant species is likely to be useful in the further development of an antimalarial drug, but its pharmacological evaluation is still required.