Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna C. Crecelius is active.

Publication


Featured researches published by Anna C. Crecelius.


Plant Journal | 2009

Matrix-free UV-laser desorption/ionization (LDI) mass spectrometric imaging at the single-cell level: Distribution of secondary metabolites of Arabidopsis thaliana and Hypericum species

Dirk Hölscher; Rohit Shroff; Katrin Knop; Michael Gottschaldt; Anna C. Crecelius; Bernd Schneider; David G. Heckel; Ulrich S. Schubert; Aleš Svatoš

The present paper describes matrix-free laser desorption/ionisation mass spectrometric imaging (LDI-MSI) of highly localized UV-absorbing secondary metabolites in plant tissues at single-cell resolution. The scope and limitations of the method are discussed with regard to plants of the genus Hypericum. Naphthodianthrones such as hypericin and pseudohypericin are traceable in dark glands on Hypericum leaves, placenta, stamens and styli; biflavonoids are also traceable in the pollen of this important phytomedical plant. The highest spatial resolution achieved, 10 microm, was much higher than that achieved by commonly used matrix-assisted laser desorption/ionization (MALDI) imaging protocols. The data from imaging experiments were supported by independent LDI-TOF/MS analysis of cryo-sectioned, laser-microdissected and freshly cut plant material. The results confirmed the suitability of combining laser microdissection (LMD) and LDI-TOF/MS or LDI-MSI to analyse localized plant secondary metabolites. Furthermore, Arabidopsis thaliana was analysed to demonstrate the feasibility of LDI-MSI for other commonly occurring compounds such as flavonoids. The organ-specific distribution of kaempferol, quercetin and isorhamnetin, and their glycosides, was imaged at the cellular level.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Phenalenone-type phytoalexins mediate resistance of banana plants (Musa spp.) to the burrowing nematode Radopholus similis

Dirk Hölscher; Suganthagunthalam Dhakshinamoorthy; Theodore Alexandrov; Michael Becker; Tom Bretschneider; Andreas Buerkert; Anna C. Crecelius; Dirk De Waele; Annemie Elsen; David G. Heckel; Heike Heklau; Christian Hertweck; Marco Kai; Katrin Knop; Christoph Krafft; Ravi Kumar Maddula; Christian Matthäus; Jürgen Popp; Bernd Schneider; Ulrich S. Schubert; Richard A. Sikora; Aleš Svatoš; Rony Swennen

Significance The ongoing decline of banana yields caused by pathogens and the use of toxic chemicals to manage them has attracted considerable attention because of the importance of bananas as a major staple food for more than 400 million people. We demonstrate that secondary metabolites (phenylphenalenones) of Musa are the reason for differences in cultivar resistance, and detected the phenylphenalenone anigorufone in greater concentrations in lesions in roots of a nematode-resistant cultivar than in those of a susceptible one. An in vitro bioassay identified anigorufone as the most active nematostatic and nematocidal compound. We discovered that large lipid–anigorufone complex droplets are formed in the bodies of Radopholus similis exposed to anigorufone, resulting in the nematode being killed. The global yield of bananas—one of the most important food crops—is severely hampered by parasites, such as nematodes, which cause yield losses up to 75%. Plant–nematode interactions of two banana cultivars differing in susceptibility to Radopholus similis were investigated by combining the conventional and spatially resolved analytical techniques 1H NMR spectroscopy, matrix-free UV-laser desorption/ionization mass spectrometric imaging, and Raman microspectroscopy. This innovative combination of analytical techniques was applied to isolate, identify, and locate the banana-specific type of phytoalexins, phenylphenalenones, in the R. similis-caused lesions of the plants. The striking antinematode activity of the phenylphenalenone anigorufone, its ingestion by the nematode, and its subsequent localization in lipid droplets within the nematode is reported. The importance of varying local concentrations of these specialized metabolites in infected plant tissues, their involvement in the plant’s defense system, and derived strategies for improving banana resistance are highlighted.


Journal of Mass Spectrometry | 2009

Tandem mass spectrometry of synthetic polymers

Anna C. Crecelius; Anja Baumgaertel; Ulrich S. Schubert

The detailed characterization of macromolecules plays an important role for synthetic chemists to define and specify the structure and properties of the successfully synthesized polymers. The search for new characterization techniques for polymers is essential for the continuation of the development of improved synthesis methods. The application of tandem mass spectrometry for the detailed characterization of synthetic polymers using the soft ionization techniques matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and electrospray ionization mass spectrometry (ESI-MS), which became the basic tools in proteomics, has greatly been increased in recent years and is summarized in this perspective. Examples of a variety of homopolymers, such as poly(methyl methacrylate), poly(ethylene glycol), as well as copolymers, e.g. copolyesters, are given. The advanced mass spectrometric techniques described in this review will presumably become one of the basic tools in polymer chemistry in the near future.


Rapid Communications in Mass Spectrometry | 2009

Characterization of different poly(2-ethyl-2-oxazoline)s via matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry

Anja Baumgaertel; Christine Weber; Katrin Knop; Anna C. Crecelius; Ulrich S. Schubert

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) coupled with CID (collision-induced dissociation) has been used for the detailed characterization of two poly(2-ethyl-2-oxazoline)s as part of a continuing study of synthetic polymers by MALDI-TOF MS/MS. These experiments provided information about the variety of fragmentation pathways for poly(oxazoline)s. It was possible to show that, in addition to the eliminations of small molecules, like ethene and hydrogen, the McLafferty rearrangement is also a possible fragmentation route. A library of fragmentation pathways for synthetic polymers was also constructed and such a library should enable the fast and automated data analysis of polymers in the future.


Analytical Chemistry | 2013

Deeper Understanding of Biological Tissue: Quantitative Correlation of MALDI-TOF and Raman Imaging

Thomas Bocklitz; Anna C. Crecelius; Christian Matthäus; Nicolae Tarcea; F. von Eggeling; Michael Schmitt; Ulrich S. Schubert; Jürgen Popp

In order to achieve a comprehensive description of biological tissue, spectral information about proteins, lipids, nucleic acids, and other biochemical components need to be obtained concurrently. Different analytical techniques may be combined to record complementary information of the same sample. Established techniques, which can be utilized to elucidate the biochemistry of tissue samples are, for instance, MALDI-TOF-MS and Raman microscopic imaging. With this contribution, we combine these two techniques for the first time. The combination of both techniques allows the utilization and interpretation of complementary information (i.e., the information about the protein composition derived from the Raman spectra with data of the lipids analyzed by the MALDI-TOF measurements). Furthermore, we demonstrate how spectral information from MALDI-TOF experiments can be utilized to interpret Raman spectra.


Journal of the American Society for Mass Spectrometry | 2015

Spatial Segmentation of MALDI FT-ICR MSI Data: A Powerful Tool to Explore the Head and Neck Tumor In Situ Lipidome

Lukas Krasny; Franziska Hoffmann; Günther Ernst; Dennis Trede; Theodore Alexandrov; Vladimír Havlíček; Orlando Guntinas-Lichius; Ferdinand von Eggeling; Anna C. Crecelius

AbstractMatrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI MSI) is a well-established analytical technique for determining spatial localization of lipids in biological samples. The use of Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometers for the molecular imaging of endogenous compounds is gaining popularity, since the high mass accuracy and high mass resolving power enables accurate determination of exact masses and, consequently, a more confident identification of these molecules. The high mass resolution FT-ICR imaging datasets are typically large in size. In order to analyze them in an appropriate timeframe, the following approach has been employed: the FT-ICR imaging datasets were spatially segmented by clustering all spectra by their similarity. The resulted spatial segmentation maps were compared with the histologic annotation. This approach facilitates interpretation of the full datasets by providing spatial regions of interest. The application of this approach, which has originally been developed for MALDI-TOF MSI datasets, to the lipidomic analysis of head and neck tumor tissue revealed new insights into the metabolic organization of the carcinoma tissue. Graphical Abstractᅟ


Analytica Chimica Acta | 2014

Mass spectrometric imaging of synthetic polymers.

Anna C. Crecelius; Jürgen Vitz; Ulrich S. Schubert

The analysis of synthetic polymers represents today an important part of polymer science to determine their physical properties and to optimize the performance of polymeric materials for block copolymers as well as blend systems. The characterization can easily and rapidly be performed by mass spectrometry. In particular, the film formation of a synthetic polymer is of interest in material research and quality control, which can be determined by employing mass spectrometric imaging (MSI) using secondary ion mass spectrometry (SIMS) or matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. MALDI-MSI has been rapidly improved for the analysis of tissue cross-sections due to its soft ionization and accessible m/z range, which both also play an important role in polymer science. On the other hand, SIMS-MSI enables a sub-micrometer molecular spatial resolution, which is limited in MALDI-MSI due to the spatial resolution capabilities of the laser desorption process. The aim of the present contribution is to summarize recent advances in both imaging techniques for the analysis of synthetic polymers and to highlight their capabilities to correlate several imaging modalities in future applications.


Journal of Histochemistry and Cytochemistry | 2010

Depicting the Spatial Distribution of Proteins in Human Tumor Tissue Combining SELDI and MALDI Imaging and Immunohistochemistry

Liane Wehder; Günther Ernst; Anna C. Crecelius; Orlando Guntinas-Lichius; Christian Melle; Ulrich S. Schubert; Ferdinand von Eggeling

Carcinoma tissue consists of not only tumor cells but also fibroblasts, endothelial cells or vascular structures, and inflammatory cells forming the supportive tumor stroma. Therefore, the spatial distribution of proteins that promote growth and proliferation in these complex functional units is of high interest. Matrix-assisted laser desorption/ionization imaging mass spectrometry is a newly developed technique that generates spatially resolved profiles of protein signals directly from thin tissue sections. Surface-enhanced laser desorption/ionization mass spectrometry (MS)combined with tissue microdissection allows analysis of defined parts of the tissue with a higher sensitivity and a broader mass range. Nevertheless, both MS-based techniques have a limited spatial resolution. IHC is a technique that allows a resolution down to the subcellular level. However, the detection and measurement of a specific protein expression level is possible only by semiquantitative methods. Moreover, prior knowledge about the identity of the proteins of interest is necessary. In this study, we combined all three techniques to gain highest spatial resolution, sensitivity, and quantitative information. We used frozen tissue from head and neck tumors and chose two exemplary proteins (HNP1–3 and S100A8) to highlight the advantages and disadvantages of each technique. It could be shown that the combination of these three techniques results in congruent but also synergetic data.


Journal of Mass Spectrometry | 2012

Tandem mass spectrometry of poly(ethylene imine)s by electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI)

Esra Altuntaş; Katrin Knop; Lutz Tauhardt; Kristian Kempe; Anna C. Crecelius; Michael Jäger; Martin D. Hager; Ulrich S. Schubert

In this contribution, linear poly(ethylene imine) (PEI) polymers, which are of importance in gene delivery, are investigated in detail by using electrospray ionization-quadrupole-time of flight (ESI-Q-TOF) and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS). The analyzed PEIs with different end groups were synthesized using the polymerization of substituted 2-oxazoline via a living cationic ring-opening polymerization (CROP) and a subsequent hydrolysis under acidic conditions. The main goal of this study was to identify linear PEI polymers in a detailed way to gain information about their fragmentation pathways. For this purpose, a detailed characterization of three different linear PEIs was performed by using ESI-Q-TOF and MALDI-TOF MS in combination with collision-induced dissociation (CID) experiments. In ESI-MS as well as MALDI-MS analysis, the obtained spectra of PEIs resulted in fitting mass distributions for the investigated PEIs. In the tandem MS analysis, a 1,2-hydride shift with a charge-remote rearrangement via a four-membered cyclic transition state, as well as charge-induced fragmentation reactions, was proposed as the main fragmentation mechanisms according to the obtained fragmentation products from the protonated parent peaks. In addition, heterolytic and homolytic cleavages were proposed as alternative fragmentation pathways. Moreover, a 1,4-hydrogen elimination was proposed to explain different fragmentation products obtained from the sodiated parent peaks.


ACS Combinatorial Science | 2011

Combinatorial Optimization of Multiple MALDI Matrices on a Single Tissue Sample Using Inkjet Printing

Joseph T. Delaney; Annett Urbanek; Liane Wehder; Jolke Perelaer; Anna C. Crecelius; Ferdinand von Eggeling; Ulrich S. Schubert

Taking advantage of the drop-on-demand capabilities of inkjet printing, the first example of a single tissue being used as a substrate for preparing combinatorial arrays of different matrix-assisted laser desorption/ionization (MALDI) matrices in multiple concentrations on a single chip is reported. By varying the number of droplets per spot that were printed, a gradient array of different amounts of matrix material could be printed on a single chip, while the selection of matrices could be adjusted by switching different matrix materials. The result was a two-dimensional array of multiple matrices on a single tissue slice, which could be analyzed microscopically and by MALDI to elucidate which combination of matrix and printing conditions offered the best resolution in terms of spot-to-spot distance and signal-to-noise ratios for proteins in the recorded MS spectra. This combinatorial approach enables the efficient optimization of possible matrices in an organized, side-by-side array format, which can particularly be useful for the detection of specific protein markers.

Collaboration


Dive into the Anna C. Crecelius's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge