Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna C. Salzberg is active.

Publication


Featured researches published by Anna C. Salzberg.


Cell Cycle | 2012

MiR-365 regulates lung cancer and developmental gene thyroid transcription factor 1

Ji Qi; Shawn J. Rice; Anna C. Salzberg; E. Aaron Runkle; Jason Liao; Dani S. Zander; David Mu

Thyroid transcription factor 1 (TTF-1 or NKX2-1) is an essential fetal lung developmental factor, which can be recurrently activated by gene amplification in adult lung cancer. We have discovered the first microRNA (i.e., miR-365) that directly regulates TTF-1 by interacting with its 3’-untranslated region. By gene expression profiling, we identified other putative targets of miR-365 and miR-365*. In line with the microRNA/target relationship, the expression patterns of miR-365 and TTF-1 were in an inverse relationship in human lung cancer. Exploration of human lung cancer genomics data uncovered that TTF-1 gene amplification was significantly associated with DNA copy number loss at one of the two genomic loci encoding the precursor RNA of mature miR-365 (i.e., mir-365-1). This implies the existence of genetic selection pressure to lose the repressive miR-365 that would otherwise suppress amplified TTF-1. We detected a signaling loop between transforming growth factor beta (TGFb) and miR-365 and this loop reinforced suppression of TTF-1 via miR-365. Mir-365 also targeted an epithelial mesenchymal transition (EMT)-promoting gene HMGA2. In summary, these data connect the lung transcriptional program to the microRNA network.


Journal of Pharmacology and Experimental Therapeutics | 2014

Regulation of UDP-Glucuronosyltransferase 1A1 Expression and Activity by MicroRNA 491-3p

Douglas F. Dluzen; Dongxiao Sun; Anna C. Salzberg; Nate Jones; Ryan T. Bushey; Gavin P. Robertson; Philip Lazarus

The UDP-glucuronosyltransferase (UGT) 1A enzymes are involved in the phase II metabolism of many important endogenous and exogenous compounds. The nine UGT1A isoforms exhibit high interindividual differences in expression, but their epigenetic regulation is not well understood. The purpose of the present study was to examine microRNA (miRNA) regulation of hepatic UGT1A enzymes and determine whether or not that regulation impacts enzymatic activity. In silico analysis identified miRNA 491-3p (miR-491-3p) as a potential regulator of the UGT1A gene family via binding to the shared UGT1A 3′-untranslated region common to all UGT1A enzymes. Transfection of miR-491-3p mimic into HuH-7 cells significantly repressed UGT1A1 (P < 0.001), UGT1A3 (P < 0.05), and UGT1A6 (P < 0.05) mRNA levels. For UGT1A1, this repression correlated with significantly reduced metabolism of raloxifene into raloxifene-6-glucuronide (ral-6-gluc; P < 0.01) and raloxifene-4′-glucuronide (ral-4′-gluc; P < 0.01). In HuH-7 cells with repressed miR-491-3p expression, there was a significant increase (∼80%; P < 0.01) in UGT1A1 mRNA and a corresponding increase in glucuronidation of raloxifene into ral-6-gluc (50%; P < 0.05) and ral-4′-gluc (22%; P < 0.01). Knockdown of endogenous miR-491-3p in HepG2 cells did not significantly alter UGT1A1 mRNA levels but did increase the formation of ral-6-gluc (50%; P < 0.05) and ral-4′-gluc (34%; P < 0.001). A significant inverse correlation between miR-491-3p expression and both UGT1A3 (P < 0.05) and UGT1A6 (P < 0.01) mRNA levels was observed in a panel of normal human liver specimens, with a significant (P < 0.05) increase in UGT1A3 and UGT1A6 mRNA levels observed in miR-491-3p nonexpressing versus expressing liver specimens. These results suggest that miR-491-3p is an important factor in regulating the expression of UGT1A enzymes in vivo.


Carcinogenesis | 2015

Metabolic reprogramming and dysregulated metabolism: cause, consequence and/or enabler of environmental carcinogenesis?

R.Brooks Robey; Judith Weisz; Nancy B. Kuemmerle; Anna C. Salzberg; Arthur Berg; Dustin G. Brown; Laura L. Kubik; Roberta Palorini; Fahd Al-Mulla; Rabeah Al-Temaimi; Anna Maria Colacci; Chiara Mondello; Jayadev Raju; Jordan Woodrick; A.Ivana Scovassi; Neetu Singh; Monica Vaccari; Rabindra Roy; Stefano Forte; Lorenzo Memeo; Hosni K. Salem; Amedeo Amedei; Roslida A. Hamid; Graeme P. Williams; Leroy Lowe; Joel N. Meyer; Francis L. Martin; William H. Bisson; Ferdinando Chiaradonna; Elizabeth P. Ryan

Environmental contributions to cancer development are widely accepted, but only a fraction of all pertinent exposures have probably been identified. Traditional toxicological approaches to the problem have largely focused on the effects of individual agents at singular endpoints. As such, they have incompletely addressed both the pro-carcinogenic contributions of environmentally relevant low-dose chemical mixtures and the fact that exposures can influence multiple cancer-associated endpoints over varying timescales. Of these endpoints, dysregulated metabolism is one of the most common and recognizable features of cancer, but its specific roles in exposure-associated cancer development remain poorly understood. Most studies have focused on discrete aspects of cancer metabolism and have incompletely considered both its dynamic integrated nature and the complex controlling influences of substrate availability, external trophic signals and environmental conditions. Emerging high throughput approaches to environmental risk assessment also do not directly address the metabolic causes or consequences of changes in gene expression. As such, there is a compelling need to establish common or complementary frameworks for further exploration that experimentally and conceptually consider the gestalt of cancer metabolism and its causal relationships to both carcinogenesis and the development of other cancer hallmarks. A literature review to identify environmentally relevant exposures unambiguously linked to both cancer development and dysregulated metabolism suggests major gaps in our understanding of exposure-associated carcinogenesis and metabolic reprogramming. Although limited evidence exists to support primary causal roles for metabolism in carcinogenesis, the universality of altered cancer metabolism underscores its fundamental biological importance, and multiple pleiomorphic, even dichotomous, roles for metabolism in promoting, antagonizing or otherwise enabling the development and selection of cancer are suggested.


PLOS ONE | 2012

Stage and Gene Specific Signatures Defined by Histones H3K4me2 and H3K27me3 Accompany Mammalian Retina Maturation In Vivo

Evgenya Y. Popova; Xuming Xu; Andrew T. DeWan; Anna C. Salzberg; Arthur Berg; Josephine Hoh; Samuel Shao-Min Zhang; Colin J. Barnstable

The epigenetic contribution to neurogenesis is largely unknown. There is, however, growing evidence that posttranslational modification of histones is a dynamic process that shows many correlations with gene expression. Here we have followed the genome-wide distribution of two important histone H3 modifications, H3K4me2 and H3K27me3 during late mouse retina development. The retina provides an ideal model for these studies because of its well-characterized structure and development and also the extensive studies of the retinal transcriptome and its development. We found that a group of genes expressed only in mature rod photoreceptors have a unique signature consisting of de-novo accumulation of H3K4me2, both at the transcription start site (TSS) and over the whole gene, that correlates with the increase in transcription, but no accumulation of H3K27me3 at any stage. By in silico analysis of this unique signature we have identified a larger group of genes that may be selectively expressed in mature rod photoreceptors. We also found that the distribution of H3K4me2 and H3K27me3 on the genes widely expressed is not always associated with their transcriptional levels. Different histone signatures for retinal genes with the same gene expression pattern suggest the diversities of epigenetic regulation. Genes without H3K4me2 and H3K27me3 accumulation at any stage represent a large group of transcripts never expressed in retina. The epigenetic signatures defined by H3K4me2 and H3K27me3 can distinguish cell-type specific genes from widespread transcripts and may be reflective of cell specificity during retina maturation. In addition to the developmental patterns seen in wild type retina, the dramatic changes of histone modification in the retinas of mutant animals lacking rod photoreceptors provide a tool to study the epigenetic changes in other cell types and thus describe a broad range of epigenetic events in a solid tissue in vivo.


Molecular Neurobiology | 2016

LSD1-Mediated Demethylation of H3K4me2 Is Required for the Transition from Late Progenitor to Differentiated Mouse Rod Photoreceptor

Evgenya Y. Popova; Carolina Pinzon-Guzman; Anna C. Salzberg; Samuel Shao-Min Zhang; Colin J. Barnstable

Epigenetic modifiers can work in concert with transcription factors to control the transition of cells from proliferating progenitors into quiescent terminally differentiated cells. This transition involves changes in histone methylation and one of the key regulators of this is the H3K4me2/1 histone demethylase LSD1. Here, we show that the highest expression of LSD1 occurs in postmitotic retinal cells during the peak period of rod photoreceptor differentiation. Pharmacological inhibition of LSD1 in retinal explants cultured from PN1 to PN8 had three major effects. It prevented the normal decrease in expression of genes associated with progenitor function, it blocked rod photoreceptor development, and it increased expression of genes associated with other retinal cell types. The maintained expression of progenitor genes was associated with a maintained level of H3K4me2 over the gene and its promoter. Among the genes whose expression was maintained was Hes1, a repressor known to block rod photoreceptor development. The inhibition of rod photoreceptor gene expression occurred in spite of the normal expression of transcription factors CRX and NRL, and the normal accumulation of H3K4me2 marks over the promoter and gene body. We suggest that LSD1 acts in concert with a series of nuclear receptors to modify chromatin structure and repress progenitor genes as well as to inhibit ectopic patterns of gene expression in the differentiating postmitotic retinal cells.


PLOS ONE | 2017

Identification and prediction of alternative transcription start sites that generate rod photoreceptor-specific transcripts from ubiquitously expressed genes

Evgenya Y. Popova; Anna C. Salzberg; Chen Yang; Samuel Shao Min Zhang; Colin J. Barnstable

Transcriptome complexity is substantially increased by the use of multiple transcription start sites for a given gene. By utilizing a rod photoreceptor-specific chromatin signature, and the RefSeq database of established transcription start sites, we have identified essentially all known rod photoreceptor genes as well as a group of novel genes that have a high probability of being expressed in rod photoreceptors. Approximately half of these novel rod genes are transcribed into multiple mRNA and/or protein isoforms through alternative transcriptional start sites (ATSS), only one of which has a rod-specific epigenetic signature and gives rise to a rod transcript. This suggests that, during retina development, some genes use ATSS to regulate cell type and temporal specificity, effectively generating a rod transcript from otherwise ubiquitously expressed genes. Biological confirmation of the relationship between epigenetic signatures and gene expression, as well as comparison of our genome-wide chromatin signature maps with available data sets for retina, namely a ChIP-on-Chip study of Polymerase-II (Pol-II) binding sites, ChIP-Seq studies for NRL- and CRX- binding sites and DHS (University of Washington data, available on UCSC mouse Genome Browser as a part of ENCODE project) fully support our hypothesis and together accurately identify and predict an array of new rod transcripts. The same approach was used to identify a number of TSS that are not currently in RefSeq. Biological conformation of the use of some of these TSS suggests that this method will be valuable for exploring the range of transcriptional complexity in many tissues. Comparison of mouse and human genome-wide data indicates that most of these alternate TSS appear to be present in both species, indicating that our approach can be useful for identification of regulatory regions that might play a role in human retinal disease.


Molecular and Cellular Neuroscience | 2016

RNA-seq analysis of developing olfactory bulb projection neurons

Yuka Imamura Kawasawa; Anna C. Salzberg; Mingfeng Li; Nenad Sestan; Charles A. Greer; Fumiaki Imamura

Transmission of olfactory information to higher brain regions is mediated by olfactory bulb (OB) projection neurons, the mitral and tufted cells. Although mitral/tufted cells are often characterized as the OB counterpart of cortical projection neurons (also known as pyramidal neurons), they possess several unique morphological characteristics and project specifically to the olfactory cortices. Moreover, the molecular networks contributing to the generation of mitral/tufted cells during development are largely unknown. To understand the developmental patterns of gene expression in mitral/tufted cells in the OB, we performed transcriptome analyses targeting purified OB projection neurons at different developmental time points with next-generation RNA sequencing (RNA-seq). Through these analyses, we found 1202 protein-coding genes that are temporally differentially-regulated in developing projection neurons. Among them, 388 genes temporally changed their expression level only in projection neurons. The data provide useful resource to study the molecular mechanisms regulating development of mitral/tufted cells. We further compared the gene expression profiles of developing mitral/tufted cells with those of three cortical projection neuron subtypes, subcerebral projection neurons, corticothalamic projection neurons, and callosal projection neurons, and found that the molecular signature of developing olfactory projection neuron bears resemblance to that of subcerebral neurons. We also identified 3422 events that change the ratio of splicing isoforms in mitral/tufted cells during maturation. Interestingly, several genes expressed a novel isoform not previously reported. These results provide us with a broad perspective of the molecular networks underlying the development of OB projection neurons.


Nature Communications | 2017

Variations in Brain Defects Result from Cellular Mosaicism in the Activation of Heat Shock Signalling.

Seiji Ishii; Masaaki Torii; Alexander I. Son; Meenu Rajendraprasad; Yury M. Morozov; Yuka Imamura Kawasawa; Anna C. Salzberg; Mitsuaki Fujimoto; Kristen J. Brennand; Akira Nakai; Valérie Mezger; Fred H. Gage; Pasko Rakic; Kazue Hashimoto-Torii

Repetitive prenatal exposure to identical or similar doses of harmful agents results in highly variable and unpredictable negative effects on fetal brain development ranging in severity from high to little or none. However, the molecular and cellular basis of this variability is not well understood. This study reports that exposure of mouse and human embryonic brain tissues to equal doses of harmful chemicals, such as ethanol, activates the primary stress response transcription factor heat shock factor 1 (Hsf1) in a highly variable and stochastic manner. While Hsf1 is essential for protecting the embryonic brain from environmental stress, excessive activation impairs critical developmental events such as neuronal migration. Our results suggest that mosaic activation of Hsf1 within the embryonic brain in response to prenatal environmental stress exposure may contribute to the resulting generation of phenotypic variations observed in complex congenital brain disorders.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2017

RNA-seq implicates deregulation of the immune system in the pathogenesis of diverticulitis

Kathleen M. Schieffer; Christine S. Choi; Scott Emrich; Leonard R. Harris; Sue Deiling; Dipti M. Karamchandani; Anna C. Salzberg; Yuka Imamura Kawasawa; Gregory S. Yochum; Walter A. Koltun

Individuals with diverticula or outpouchings of the colonic mucosa and submucosa through the colonic wall have diverticulosis, which is usually asymptomatic. In 10-25% of individuals, the diverticula become inflamed, resulting in diverticulitis. Very little is known about the pathophysiology or gene regulatory pathways involved in the development of diverticulitis. To identify these pathways, we deep sequenced RNAs isolated from full-thickness sections of sigmoid colon from diverticulitis patients and control individuals. Specifically for diverticulitis cases, we analyzed tissue adjacent to areas affected by chronic disease. Since the tissue was collected during elective sigmoid resection, the disease was in a quiescent state. A comparison of differentially expressed genes found that gene ontology (GO) pathways associated with the immune response were upregulated in diverticulitis patients compared with nondiverticulosis controls. Next, weighted gene coexpression network analysis was performed to identify the interaction among coexpressed genes. This analysis revealed RASAL3, SASH3, PTPRC, and INPP5D as hub genes within the brown module eigengene, which highly correlated (r = 0.67, P = 0.0004) with diverticulitis. Additionally, we identified elevated expression of downstream interacting genes. In summary, transcripts associated with the immune response were upregulated in adjacent tissue from the sigmoid colons of chronic, recurrent diverticulitis patients. Further elucidating the genetic or epigenetic mechanisms associated with these alterations can help identify those at risk for chronic disease and may assist in clinical decision management.NEW & NOTEWORTHY By using an unbiased approach to analyze transcripts expressed in unaffected colonic tissues adjacent to those affected by chronic diverticulitis, our study implicates that a defect in the immune response may be involved in the development of the disease. This finding expands on the current data that suggest the pathophysiology of diverticulitis is mediated by dietary, age, and obesity-related factors. Further characterizing the immunologic differences in diverticulitis may better inform clinical decision-making.


Physiological Genomics | 2015

Global deletion of BCATm increases expression of skeletal muscle genes associated with protein turnover

Christopher J. Lynch; Scot R. Kimball; Yuping Xu; Anna C. Salzberg; Yuka Imamura Kawasawa

Consumption of a protein-containing meal by a fasted animal promotes protein accretion in skeletal muscle, in part through leucine stimulation of protein synthesis and indirectly through repression of protein degradation mediated by its metabolite, α-ketoisocaproate. Mice lacking the mitochondrial branched-chain aminotransferase (BCATm/Bcat2), which interconverts leucine and α-ketoisocaproate, exhibit elevated protein turnover. Here, the transcriptomes of gastrocnemius muscle from BCATm knockout (KO) and wild-type mice were compared by next-generation RNA sequencing (RNA-Seq) to identify potential adaptations associated with their persistently altered nutrient signaling. Statistically significant changes in the abundance of 1,486/∼39,010 genes were identified. Bioinformatics analysis of the RNA-Seq data indicated that pathways involved in protein synthesis [eukaryotic initiation factor (eIF)-2, mammalian target of rapamycin, eIF4, and p70S6K pathways including 40S and 60S ribosomal proteins], protein breakdown (e.g., ubiquitin mediated), and muscle degeneration (apoptosis, atrophy, myopathy, and cell death) were upregulated. Also in agreement with our previous observations, the abundance of mRNAs associated with reduced body size, glycemia, plasma insulin, and lipid signaling pathways was altered in BCATm KO mice. Consistently, genes encoding anaerobic and/or oxidative metabolism of carbohydrate, fatty acids, and branched chain amino acids were modestly but systematically reduced. Although there was no indication that muscle fiber type was different between KO and wild-type mice, a difference in the abundance of mRNAs associated with a muscular dystrophy phenotype was observed, consistent with the published exercise intolerance of these mice. The results suggest transcriptional adaptations occur in BCATm KO mice that along with altered nutrient signaling may contribute to their previously reported protein turnover, metabolic and exercise phenotypes.

Collaboration


Dive into the Anna C. Salzberg's collaboration.

Top Co-Authors

Avatar

Yuka Imamura Kawasawa

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Arthur Berg

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Evgenya Y. Popova

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Colin J. Barnstable

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Duanping Liao

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Edward O. Bixler

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Karam El-Bayoumy

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Cesar Aliaga

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Christine Frielle

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

David F. Claxton

Penn State Cancer Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge