Anna Carolina Corrêa Pereira
Universidade Federal de Minas Gerais
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anna Carolina Corrêa Pereira.
Biochemical Journal | 2004
Anderson A. Andrade; Patrícia Nascimento Silva; Anna Carolina Corrêa Pereira; Lirlândia P. Sousa; Paulo César Peregrino Ferreira; Ricardo T. Gazzinelli; Erna Geessien Kroon; Catherine Ropert; Cláudio A. Bonjardim
Early events play a decisive role in virus multiplication. We have shown previously that activation of MAPK/ERK1/2 (mitogen-activated protein kinase/extracellular-signal-regulated kinase 1/2) and protein kinase A are pivotal for vaccinia virus (VV) multiplication [de Magalhães, Andrade, Silva, Sousa, Ropert, Ferreira, Kroon, Gazzinelli and Bonjardim (2001) J. Biol. Chem. 276, 38353-38360]. In the present study, we show that VV infection provoked a sustained activation of both ERK1/2 and RSK2 (ribosomal S6 kinase 2). Our results also provide evidence that this pattern of kinase activation depends on virus multiplication and ongoing protein synthesis and is maintained independently of virus DNA synthesis. It is noteworthy that the VGF (VV growth factor), although involved, is not essential for prolonged ERK1/2 activation. Furthermore, our findings suggest that the VV-stimulated ERK1/2 activation also seems to require actin dynamics, microtubule polymerization and tyrosine kinase phosphorylation. The VV-stimulated pathway MEK/ERK1/2/RSK2 (where MEK stands for MAPK/ERK kinase) leads to phosphorylation of the ternary complex factor Elk-1 and expression of the early growth response (egr-1) gene, which kinetically paralleled the kinase activation. The recruitment of this pathway is biologically relevant, since its disruption caused a profound effect on viral thymidine kinase gene expression, viral DNA replication and VV multiplication. This pattern of sustained kinase activation after VV infection is unique. In addition, by connecting upstream signals generated at the cytoskeleton and by tyrosine kinase, the MEK/ERK1/2/RSK2 cascade seems to play a decisive role not only at early stages of the infection, i.e. post-penetration, but is also crucial to define the fate of virus progeny.
Journal of Virology | 2012
Anna Carolina Corrêa Pereira; Flávia G. G. Leite; Bruno S.A.F. Brasil; Jamária Adriana Pinheiro Soares-Martins; Alice A. Torres; Paulo Filemon Paolucci Pimenta; Thaïs Souto-Padrón; Paula Traktman; Paulo César Peregrino Ferreira; Erna Geessien Kroon; Cláudio A. Bonjardim
ABSTRACT Viral manipulation of transduction pathways associated with key cellular functions such as survival, response to microbial infection, and cytoskeleton reorganization can provide the supportive milieu for a productive infection. Here, we demonstrate that vaccinia virus (VACV) infection leads to activation of the stress-activated protein kinase (SAPK)/extracellular signal-regulated kinase (ERK) 4/7 (MKK4/7)–c-Jun N-terminal protein kinase 1/2 (JNK1/2) pathway; further, the stimulation of this pathway requires postpenetration, prereplicative events in the viral replication cycle. Although the formation of intracellular mature virus (IMV) was not affected in MKK4/7- or JNK1/2-knockout (KO) cells, we did note an accentuated deregulation of microtubule and actin network organization in infected JNK1/2-KO cells. This was followed by deregulated viral trafficking to the periphery and enhanced enveloped particle release. Furthermore, VACV infection induced alterations in the cell contractility and morphology, and cell migration was reduced in the JNK-KO cells. In addition, phosphorylation of proteins implicated with early cell contractility and cell migration, such as microtubule-associated protein 1B and paxillin, respectively, was not detected in the VACV-infected KO cells. In sum, our findings uncover a regulatory role played by the MKK4/7-JNK1/2 pathway in cytoskeleton reorganization during VACV infection.
Antiviral Research | 2011
Anna Carolina Corrêa Pereira; Jamária A.P. Soares-Martins; Flávia G. G. Leite; André F.P. Da Cruz; Alice A. Torres; Thaïs Souto-Padrón; Erna Geessien Kroon; Paulo César Peregrino Ferreira; Cláudio A. Bonjardim
Abstract The pharmacological inhibitor SP600125 [anthra(1,9-cd)pyrazol-6(2H)-one 1,9-pyrazoloanthrone] has been largely employed as a c-JUN N-terminal kinase (JNK1/2) inhibitor. In this study, we evaluated whether pretreatment with SP600125 was able to prevent Orthopoxviruses Vaccinia virus (VACV), Cowpox virus (CPXV) and modified Vaccinia virus Ankara (MVA) replication. We found that incubation with SP600125 not only blocked virus-stimulated JNK phosphorylation, but also, significantly reduced virus production. We observed 1–3 log decline in viral yield depending on the cell line infected (A31, BSC-40 or BHK-21). The reduction in viral yield correlated with a dramatic impact on virus morphogenesis progress, intracellular mature viruses (IMV) were barely detected. Despite the fact that SP600125 can act as an efficient anti-orthopoxviral compound, we also provide evidence that this antiviral effect is not specifically exerted through JNK1/2 inhibition. This conclusion is supported by the fact that viral titers measured after infections of JNK1/2 knockout cells were not altered as compared to those of wild-type cells. In contrast, a decline in viral titers was verified when the infection of KO cells was carried out in the presence of the pharmacological inhibitor. SP600125 has been the focus of recent studies that have evaluated its action on diverse viral infections including DNA viruses. Our data support the notion that SP600125 can be regarded as a potential antipoxviral compound.
Archives of Virology | 2017
Flávia G. G. Leite; Alice A. Torres; Leonardo C. de Oliveira; André F.P. Da Cruz; Jamária A.P. Soares-Martins; Anna Carolina Corrêa Pereira; Giliane de Souza Trindade; Jônatas Santos Abrahão; Erna Geessien Kroon; Paulo César Peregrino Ferreira; Cláudio A. Bonjardim
Usurpation of the host’s signalling pathways is a common strategy employed by viruses to promote their successful replication. Here we show that infection with the orthopoxvirus vaccinia virus (VACV) leads to sustained stimulation of c-Jun activity during the entire infective cycle. This stimulation is temporally regulated through MEK/ERK or MKK/JNK pathways, i.e. during the early/mid phase (1 to 6 hpi) and in the late phase (9 to 24 hpi) of the infective cycle, respectively. As a transcriptional regulator, upon infection with VACV, c-Jun is translocated from the cytoplasm to the nucleus, where it binds to the AP-1 DNA sequence found at the promoter region of its target genes. To investigate the role played by c-Jun during VACV replication cycle, we generated cell lines that stably express a c-Jun-dominant negative (DNc-Jun) mutation. Our data revealed that c-Jun is required during early infection to assist with viral DNA replication, as demonstrated by the decreased amount of viral DNA found in the DNc-Jun cells. We also demonstrated that c-Jun regulates the expression of the early growth response gene (egr-1), a gene previously shown to affect VACV replication mediated by MEK/ERK signalling. VACV-induced stimulation of the MKK/JNK/JUN pathway impacts viral dissemination, as we observed a significant reduction in both viral yield, during late stages of infection, and virus plaque size. Collectively, our data suggest that, by modulating the host’s signalling pathways through a common target such as c-Jun, VACV temporally regulates its infective cycle in order to successfully replicate and subsequently spread.
Memorias Do Instituto Oswaldo Cruz | 2010
Anderson A. Andrade; Bruno S.A.F. Brasil; Anna Carolina Corrêa Pereira; Paulo César Peregrino Ferreira; Erna Geessien Kroon; Cláudio A. Bonjardim
In this paper, we provide evidence that both the mRNA and protein levels of the cyclin-dependent kinase (CDK) inhibitor p21WAF1/CDK-interacting protein 1 (Cip1) increase upon infection of A431 cells with Vaccinia virus (VACV). In addition, the VACV growth factor (VGF) seems to be required for the gene expression because infection carried out with the mutant virus VACV-VGF- revealed that this strain was unable to stimulate its transcription. Our findings are also consistent with the notion that the VGF-mediated change in p21WAF1/Cip1 expression is dependent on tyrosine kinase pathway(s) and is partially dependent on mitogen-activated protein kinase/extracellular-signal regulated kinase 1/2. We believe that these pathways are biologically significant because VACV replication and dissemination was drastically affected when the infection was carried out in the presence of the relevant pharmacological inhibitors.
REA - Revista Eletrônica de Administração | 2013
Antônio Artur de Souza; Anna Carolina Corrêa Pereira; Alessandra Grazielle Xavier; Daniele Oliveira Xavier; Eduardo Santos Mendes
FACEF Pesquisa - Desenvolvimento e Gestão | 2013
Antônio Artur de Souza; Mariana Guerra; Alessandra Grazielle Xavier; Anna Carolina Corrêa Pereira
IV Congresso Nacional de Administração e Ciências Contábeis - AdCont 2013 | 2014
Bruno Perché Pinto; Antônio Artur de Souza; Anna Carolina Corrêa Pereira
Tourism & Management Studies | 2013
Antônio Artur de Souza; Anna Carolina Corrêa Pereira; Alessandra Grazielle Xavier; Daniele Oliveira Xavier; Eduardo Santos Mendes
Tourism & Management Studies | 2013
Antônio Artur de Souza; Anna Carolina Corrêa Pereira; Alessandra Grazielle Xavier; Daniele Oliveira Xavier; Eduardo Santos Mendes