Anna Celli
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anna Celli.
The Journal of Allergy and Clinical Immunology | 2009
Tiffany C. Scharschmidt; Mao-Qiang Man; Yutaka Hatano; Debra Crumrine; Roshan Gunathilake; John P. Sundberg; Kathleen A. Silva; Theodora M. Mauro; Melanie Hupe; Soyun Cho; Yan Wu; Anna Celli; Matthias Schmuth; Kenneth R. Feingold; Peter M. Elias
BACKGROUND Mutations in the human filaggrin gene (FLG) are associated with atopic dermatitis (AD) and are presumed to provoke a barrier abnormality. Yet additional acquired stressors might be necessary because the same mutations can result in a noninflammatory disorder, ichthyosis vulgaris. OBJECTIVE We examined here whether FLG deficiency alone suffices to produce a barrier abnormality, the basis for the putative abnormality, and its proinflammatory consequences. METHODS By using the flaky-tail mouse, which lacks processed murine filaggrin because of a frameshift mutation in the gene encoding profilaggrin that mimics some mutations in human AD, we assessed whether FLG deficiency provokes a barrier abnormality, further localized the defect, identified its subcellular basis, and assessed thresholds to irritant- and hapten-induced dermatitis. RESULTS Flaky-tail mice exhibit low-grade inflammation with increased bidirectional, paracellular permeability of water-soluble xenobiotes caused by impaired lamellar body secretion and altered stratum corneum extracellular membranes. This barrier abnormality correlates with reduced inflammatory thresholds to both topical irritants and haptens. Moreover, when exposed repeatedly to topical haptens at doses that produce no inflammation in wild-type mice, flaky-tail mice experience a severe AD-like dermatosis with a further deterioration in barrier function and features of a T(H)2 immunophenotype (increased CRTH levels plus inflammation, increased serum IgE levels, and reduced antimicrobial peptide [mBD3] expression). CONCLUSIONS FLG deficiency alone provokes a paracellular barrier abnormality in mice that reduces inflammatory thresholds to topical irritants/haptens, likely accounting for enhanced antigen penetration in FLG-associated AD.
Journal of Investigative Dermatology | 2009
Roshan Gunathilake; Nanna Schürer; Brenda A. Shoo; Anna Celli; Jean-Pierre Hachem; Debra Crumrine; Ganga Sirimanna; Kenneth R. Feingold; Theodora M. Mauro; Peter M. Elias
To determine whether pigment type determines differences in epidermal function, we studied stratum corneum (SC) pH, permeability barrier homeostasis, and SC integrity in three geographically disparate populations with pigment type I-II versus IV-V skin (Fitzpatrick I-VI scale). Type IV-V subjects showed: (i) lower surface pH (approximately 0.5 U); (ii) enhanced SC integrity (transepidermal water loss change with sequential tape strippings); and (iii) more rapid barrier recovery than type I-II subjects. Enhanced barrier function could be ascribed to increased epidermal lipid content, increased lamellar body production, and reduced acidity, leading to enhanced lipid processing. Compromised SC integrity in type I-II subjects could be ascribed to increased serine protease activity, resulting in accelerated desmoglein-1 (DSG-1)/corneodesmosome degradation. In contrast, DSG-1-positive CDs persisted in type IV-V subjects, but due to enhanced cathepsin-D activity, SC thickness did not increase. Adjustment of pH of type I-II SC to type IV-V levels improved epidermal function. Finally, dendrites from type IV-V melanocytes were more acidic than those from type I-II subjects, and they transfer more melanosomes to the SC, suggesting that melanosome secretion could contribute to the more acidic pH of type IV-V skin. These studies show marked pigment-type differences in epidermal structure and function that are pH driven.
Biophysical Journal | 2010
Anna Celli; Susana A. Sanchez; Martin J. Behne; Theodore L. Hazlett; Enrico Gratton; Theodora M. Mauro
Ionic gradients are found across a variety of tissues and organs. In this report, we apply the phasor representation of fluorescence lifetime imaging data to the quantitative study of ionic concentrations in tissues, overcoming technical problems of tissue thickness, concentration artifacts of ion-sensitive dyes, and calibration across inhomogeneous tissue. We used epidermis as a model system, as Ca(2+) gradients in this organ have been shown previously to control essential biologic processes of differentiation and formation of the epidermal permeability barrier. The approach described here allowed much better localization of Ca(2+) stores than those used in previous studies, and revealed that the bulk of free Ca(2+) measured in the epidermis comes from intracellular Ca(2+) stores such as the Golgi and the endoplasmic reticulum, with extracellular Ca(2+) making a relatively small contribution to the epidermal Ca(2+) gradient. Due to the high spatial resolution of two-photon microscopy, we were able to measure a marked heterogeneity in average calcium concentrations from cell to cell in the basal keratinocytes. This finding, not reported in previous studies, calls into question the long-held hypothesis that keratinocytes increase intracellular Ca(2+), cease proliferation, and differentiate passively in response to changes in extracellular Ca(2+). The experimental results obtained using this approach illustrate the power of the experimental and analytical techniques outlined in this report. Our approach can be used in mechanistic studies to address the formation, maintenance, and function of the epidermal Ca(2+) gradient, and it should be broadly applicable to the study of other tissues with ionic gradients.
Stem cell reports | 2014
Anastasia Petrova; Anna Celli; Laureen Jacquet; Dimitra Dafou; Debra Crumrine; Melanie Hupe; Matthew Arno; Carl Hobbs; Aleksandra Cvoro; Panagiotis Karagiannis; Liani Devito; Richard Sun; Lillian C. Adame; Robert Vaughan; John A. McGrath; Theodora M. Mauro; Dusko Ilic
Summary Cornification and epidermal barrier defects are associated with a number of clinically diverse skin disorders. However, a suitable in vitro model for studying normal barrier function and barrier defects is still lacking. Here, we demonstrate the generation of human epidermal equivalents (HEEs) from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs). HEEs are structurally similar to native epidermis, with a functional permeability barrier. We exposed a pure population of hESC/iPSC-derived keratinocytes, whose transcriptome corresponds to the gene signature of normal primary human keratinocytes (NHKs), to a sequential high-to-low humidity environment in an air/liquid interface culture. The resulting HEEs had all of the cellular strata of the human epidermis, with skin barrier properties similar to those of normal skin. Such HEEs generated from disease-specific iPSCs will be an invaluable tool not only for dissecting molecular mechanisms that lead to epidermal barrier defects but also for drug development and screening.
British Journal of Dermatology | 2011
Anna Celli; D.S. Mackenzie; D.S. Crumrine; Chia-Ling Tu; Melanie Hupe; Daniel D. Bikle; Peter M. Elias; Theodora M. Mauro
Background Endoplasmic reticulum (ER) Ca2+ depletion, previously shown to signal pathological stress responses, has more recently been found also to trigger homeostatic physiological processes such as differentiation. In keratinocytes and epidermis, terminal differentiation and barrier repair require physiological apoptosis and differentiation, as evidenced by protein synthesis, caspase 14 expression, lipid secretion and stratum corneum (SC) formation.
PLOS ONE | 2012
Michael C. Oh; Joseph M. Kim; Michael Safaee; Gurvinder Kaur; Matthew Z. Sun; Rajwant Kaur; Anna Celli; Theodora M. Mauro; Andrew T. Parsa
Glioblastoma multiforme is the most malignant type of primary brain tumor with a poor prognosis. These tumors consist of a heterogeneous population of malignant cells, including well-differentiated tumor cells and less differentiated cells with stem cell properties. These cancer stem cells, known as brain tumor initiating cells, likely contribute to glioma recurrence, as they are highly invasive, mobile, resistant to radiation and chemotherapy, and have the capacity to self-renew. Glioblastoma tumor cells release excitotoxic levels of glutamate, which may be a key process in the death of peritumoral neurons, formation of necrosis, local inflammation, and glioma-related seizures. Moreover, elevated glutamate levels in the tumor may act in paracrine and autocrine manner to activate glutamate receptors on glioblastoma tumor cells, resulting in proliferation and invasion. Using a previously described culturing condition that selectively promotes the growth of brain tumor initiating cells, which express the stem cell markers nestin and SOX-2, we characterize the expression of α-amino-3-hydroxy-5-methyl-4-isozolepropionic acid (AMPA)-type glutamate receptor subunits in brain tumor initiating cells derived from glioblastomas. Here we show for the first time that glioblastoma brain tumor initiating cells express high concentrations of functional calcium-permeable AMPA receptors, compared to the differentiated tumor cultures consisting of non-stem cells. Up-regulated calcium-permeable AMPA receptor expression was confirmed by immunoblotting, immunocytochemistry, and intracellular calcium imaging in response to specific agonists. Our findings raise the possibility that glutamate secretion in the GBM tumor microenvironment may stimulate brain tumor derived cancer stem cells.
Journal of Investigative Dermatology | 2014
Mao-Qiang Man; Tzu-Kai Lin; Juan Luis Santiago; Anna Celli; Lily Zhong; Zhi-Ming Huang; Truus Roelandt; Melanie Hupe; John P. Sundberg; Kathleen A. Silva; Debra Crumrine; Gemma Martin-Ezquerra; Carles Trullas; Richard Sun; Joan S. Wakefield; Maria L. Wei; Kenneth R. Feingold; Theodora M. Mauro; Peter M. Elias
Humans with darkly-pigmented skin display superior permeability barrier function in comparison to humans with lightly-pigmented skin. The reduced pH of the stratum corneum (SC) of darkly-pigmented skin could account for enhanced function, because acidifying lightly-pigmented human SC resets barrier function to darkly-pigmented levels. In SKH1 (non-pigmented) vs. SKH2/J (pigmented) hairless mice, we evaluated how a pigment-dependent reduction in pH could influence epidermal barrier function. Permeability barrier homeostasis is enhanced in SKH2/J vs. SKH1 mice, correlating with a reduced pH in the lower SC that co-localizes with the extrusion of melanin granules. Darkly-pigmented human epidermis also shows substantial melanin extrusion in the outer epidermis. Both acute barrier disruption and topical basic pH challenges accelerate re-acidification of SKH2/J (but not SKH1) SC, while inducing melanin extrusion. SKH2/J mice also display enhanced expression of the SC acidifying enzyme, secretory phospholipase A2f (sPLA2f). Enhanced barrier function of SKH2/J mice could be attributed to enhanced activity of two acidic pH-dependent, ceramide-generating enzymes, β-glucocerebrosidase and acidic sphingomyelinase, leading to accelerated maturation of SC lamellar bilayers. Finally, organotypic cultures of darkly-pigmented-bearing human keratinocytes display enhanced barrier function in comparison to lightly-pigmented cultures. Together, these results suggest that the superior barrier function of pigmented epidermis can be largely attributed to the pH-lowering impact of melanin persistence/extrusion and enhanced sPLA2f expression.
Experimental Dermatology | 2012
Anna Celli; Yongjiao Zhai; Yan J Jiang; Debbie Crumrine; Peter M Elias; Kenneth R. Feingold; Theodora M. Mauro
In terrestrial animals, the epidermal barrier transitions from covering an organism suspended in a liquid environment in utero, to protecting a terrestrial animal postnatally from air and environmental exposure. Tight junctions (TJ) are essential for establishing the epidermal permeability barrier during embryonic development and modulate normal epidermal development and barrier functions postnatally. We now report that TJ function, as well as claudin‐1 and occludin expression, change in parallel during late epidermal development. Specifically, TJ block the paracellular movement of Lanthanum (La3+) early in rat in vivo prenatal epidermal development, at gestational days 18–19, with concurrent upregulation of claudin‐1 and occludin. TJ then become more permeable to ions and water as the fetus approaches parturition, concomitant with development of the lipid epidermal permeability barrier, at days 20–21. This sequence is recapitulated in cultured human epidermal equivalents (HEE), as assessed both by ultrastructural studies comparing permeation of large and small molecules and by the standard electrophysiologic parameter of resistance (R), suggesting further that this pattern of development is intrinsic to mammalian epidermal development. These findings demonstrate that the role of TJ changes during epidermal development, and further suggest that the TJ‐based and lipid‐based epidermal permeability barriers are interdependent.
FEBS Letters | 2015
Felicitas Bosen; Anna Celli; Debra Crumrine; Katharina vom Dorp; Philipp Ebel; Holger Jastrow; Peter Dörmann; Elke Winterhager; Theodora M. Mauro; Klaus Willecke
The keratitis–ichthyosis–deafness (KID) syndrome is caused by mutations in the gap junctional channel protein connexin 26 (Cx26), among them the mutation Cx26S17F. Heterozygous Cx26S17F mice resemble the human KID syndrome, i.e. exhibiting epidermal hyperplasia and hearing impairments. Newborn Cx26S17F mice show a defective epidermal water barrier as well as altered epidermal lipid secretion and location. Linoleoyl ω‐esterified ceramides are strongly decreased on the skin surface of Cx26S17F mice. Moreover, the epidermal calcium gradient is altered in the mutant mice. These alterations may be caused by an abnormal Cx26S17F channel function that leads to a defective epidermal water barrier, which in turn may trigger the hyperproliferation seen in the KID syndrome.
Biochimica et Biophysica Acta | 2010
Anna Celli; Enrico Gratton
Scanning-fluctuation correlation spectroscopy was used to detect subresolution organizational fluctuations in the lipid liquid-crystalline phase for single lipid model systems. We used the fluorescent probe Laurdan which is sensitive to the amount of water in the membrane to show that there is a spatial heterogeneity on the scale of few pixels (the size of the pixel is 50 nm). We calculated the pixel variance of the GP function and we found that the variance has a peak at the phase transition for 3 different samples made of pure lipids. The pixel variance has an abrupt change at the phase transition of the membrane and then it slowly decreases at higher temperature. The relatively large variance of the GP indicates that the liquid phase of the membrane is quite heterogeneous even several degrees higher than the phase transition temperature. We interpreted this result as evidence of an underlying microscale structure of the membrane in which water is not uniformly distributed at the micron scale. Imaging of these microstructures shows that the pixels with different GP tend to concentrate in specific domains in the membrane. In the case of single lipid membrane, the statistical and fluctuation analysis of the GP data shows that even such simple lipid systems are capable of generating and maintaining stable structural and organizational heterogeneities.