Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Chiarini is active.

Publication


Featured researches published by Anna Chiarini.


Biomaterials | 2003

Silk fibroin/poly(carbonate)-urethane as a substrate for cell growth: in vitro interactions with human cells

Anna Chiarini; P. Petrini; Sabrina Bozzini; Ilaria Dal Prà; Ubaldo Armato

Silk fibroin (SF)-based or -coated biomaterials are likely to be endowed with structural and surface properties that render them particularly apt for biomedical applications. In this work we investigated the behavior of four different strains of normal human adult fibroblasts that had been seeded onto membranes made up of poly(carbonate) urethane (PCU), the surfaces of which had or had not been homogeneously coated with SF. Cell adhesion within 3h to the SF-coated PCU films was 2.2-fold that to their uncoated homologues. After 30 days of incubation in vitro, 2.5-fold more cells had grown on the SF-coated specimens than on the uncoated ones. This enhanced cell adherence and hence growth on the SF-coated surfaces was coupled with higher cumulative rates of D-glucose (but not L-glutamine) uptake and of both lactate and interleukin-6 (IL-6) cumulative secretion. Conversely, human fibroblasts cultured on either type of PCU scaffolds never secreted any ELISA-assayable amount of three main proinflammatory cytokines, namely interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), and transforming growth factor-beta1 (TGF-beta1). Finally, when the metabolic activities were compared on a per 10(5) cells basis, it became clear that the adhesion to SF favored an initially higher consumption of D-glucose, a late higher release of IL-6, and an at-first more intense, but declining, extracellular assembly of type I collagen fibers. Overall, these results show that SF-coated PCU membranes represent a novel type of biomaterial that favors the adhesion, the growth and performance of specific metabolic tasks by normal human adult fibroblasts without eliciting any concurrent secretion of some of the chief proinflammatory cytokines.


Journal of Cellular Biochemistry | 2005

Roles of Ca2+ and the Ca2+‐sensing receptor (CASR) in the expression of inducible NOS (nitric oxide synthase)‐2 and its BH4 (tetrahydrobiopterin)‐dependent activation in cytokine‐stimulated adult human astrocytes

Ilaria Dal Prà; Anna Chiarini; Edward F. Nemeth; Ubaldo Armato; James F. Whitfield

Since NO production by NOS‐2 made by astrocytes activated by proinflammatory cytokines contributes to the killing of neurons in variously damaged human brains, knowing the mechanisms responsible for NOS‐2 expression should contribute to developing effective therapeutics. The expression and activation of NOS‐2 in normal adult human cerebral cortical astrocytes treated with three proinflammatory cytokines, IL‐1β, TNF‐α, and IFN‐γ, are driven by two separable mechanisms. NOS‐2 expression requires a burst of p38 MAPK activity, while the activation of the resulting enzyme protein requires MEK/ERK‐dependent BH4 (tetrahydrobiopterin) synthesis between 24 and 24.5 h after adding the cytokines to the culture medium. Here we show that NOS‐2 expression in the activated astrocytes requires that the culture medium contain 1.8 mM Ca2+, but it is unaffected by inhibiting calcium‐sensing receptors (CASRs) with NPS 89636. However, NOS‐2 activation is inhibited by NPS 89626 during the MEK/ERK‐dependent stage between 24 and 24.5 h after adding the cytokines, and this inhibition can be overridden by exogenous BH4. Therefore, NOS‐2 expression and the subsequent BH4‐dependent NOS‐2‐activation in human astrocytes need 1.8 mM Ca2+ to be in the culture medium, while NOS‐2 activation also needs functional CASRs between 24 and 24.5 h after cytokine addition. These findings raise the possibility that calcilytic drugs prevent NO‐induced damage and death of human neurons.


Proceedings of the IEEE-EMBS Special Topic Conference on Molecular, Cellular and Tissue Engineering | 2002

Silk fibroin-polyurethane scaffolds for tissue engineering

P. Petrini; Anna Chiarini; Sabrina Bozzini; I. Dal Pra; S. Farè; Ubaldo Armato

Silk fibroin (SF) is a highly promising protein for its surface and structural properties, associated with a good bio- and hemo-compatibility. However, its mechanical properties and architecture cannot be easily tailored to meet the requirements of specific applications.In this work, SF was used to modify the surface properties of polyurethanes (PUs), thus obtaining 2D and 3D scaffolds for tissue regeneration. PUs were chosen for their well known advantageous properties and versatility; they can be obtained either as 2D (films) or 3D (foams) substrates. Films of a medical-grade poly-carbonate-urethane were prepared by solvent casting; PU foams were purposely designed and prepared with a morphology (porosity and cell size) adequate for cell growth. PU substrates were coated with fibroin by a dipping technique. To stabilize the coating layer, a conformational change of the protein from the α-form (water soluble) to the β-form (not water soluble) was induced.Novel methodology in UV spectroscopy were developed for quantitatively analyzing the SF-concentration in dilute solutions. Pure fibroin was used as standard, as an alternative to the commonly used albumin, allowing real concentration values to be obtained.SF-coatings showed good stability in physiological-like conditions. A treatment with methanol further stabilized the coating.Preliminary results with human fibroblasts indicated that SF coating promote cell adhesion and growth, suggesting that SF-modified PUs appear to be suitable scaffolds for tissue engineering applications.© 2001 Kluwer Academic Publishers


Journal of Mass Spectrometry | 2012

Direct screening of herbal blends for new synthetic cannabinoids by MALDI-TOF MS.

Rossella Gottardo; Anna Chiarini; Ilaria Dal Prà; Catia Seri; Claudia Rimondo; Giovanni Serpelloni; Ubaldo Armato; Franco Tagliaro

Since 2004, a number of herbal blends containing different synthetic compounds mimicking the pharmacological activity of cannabinoids and displaying a high toxicological potential have appeared in the market. Their availability is mainly based on the so-called e-commerce, being sold as legal alternatives to cannabis and cannabis derivatives. Although highly selective, sensitive, accurate, and quantitative methods based on GC-MS and LC-MS are available, they lack simplicity, rapidity, versatility and throughput, which are required for product monitoring. In this context, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) offers a simple and rapid operation with high throughput. Thus, the aim of the present work was to develop a MALDI-TOF MS method for the rapid qualitative direct analysis of herbal blend preparations for synthetic cannabinoids to be used as front screening of confiscated clandestine preparations. The sample preparation was limited to herbal blend leaves finely grinding in a mortar and loading onto the MALDI plate followed by addition of 2 µl of the matrix/surfactant mixture [α-cyano-4-hydroxy-cinnamic acid/cetyltrimethylammonium bromide (CTAB)]. After drying, the sample plate was introduced into the ion source for analysis. MALDI-TOF conditions were as follows: mass spectra were analyzed in the range m/z 150-550 by averaging the data from 50 laser shots and using an accelerating voltage of 20u2009kV. The described method was successfully applied to the screening of 31 commercial herbal blends, previously analyzed by GC-MS. Among the samples analyzed, 21 contained synthetic cannabinoids (namely JWH-018, JWH-073, JWH-081, JWH-250, JWH-210, JWH-019, and AM-694). All the results were in agreement with GC-MS, which was used as the reference technique.


Glycoconjugate Journal | 1993

Human erythrocyte sialidase is linked to the plasma membrane by a glycosylphosphatidylinositol anchor and partly located on the outer surface.

Anna Chiarini; Amelia Fiorilli; Lucia Di Francesco; Bruno Venerando; Guido Tettamanti

Treatment of human erythrocyte ghosts with phosphatidylinositol-phospholipase C (PIPLC) fromBacillus cereus liberated the ghost-linked sialidase. Maximal release of sialidase (about 70% of total) was achieved by incubating ghosts at 37°C for 60 min, at pH 6.0, with PIPLC (PIPLC total units/ghost protein ratio, 4.5 each time) added at the beginning of incubation and every 15 min (four subsequent additions). Liberated sialidase was fully resistant to at least four cycles of rapid freezing and thawing and to storage at 4°C for at least 48 h. The liberated enzyme had an optimal activity at pH 4.2, degraded ganglioside GD1a better than methylumbelliferylN-acetylneuraminic acid (about fourfold), and gave aKm value of 2.56 · 10−4m and an apparentVmax of 2.22 mU per mg protein on GD1a. Treatment of intact erythrocytes with PIPLC (PIPLC total units/erythrocyte protein ratio, 8), under conditions where haemolysis was practically negligible, caused liberation of 10–12% of membrane linked sialidase, indicating that the enzyme is, at least in part, located on the outer surface of the erythrocyte membrane. It is concluded that the erythrocyte membrane sialidase is anchored by a glycosylphosphatidylinositol structure sensitive to PIPLC action, and is partly located on the outer surface.


Journal of Alzheimer's Disease | 2010

Amyloid-β25-35, an Amyloid-β1-42 Surrogate, and Proinflammatory Cytokines Stimulate VEGF-A Secretion by Cultured, Early Passage, Normoxic Adult Human Cerebral Astrocytes

Anna Chiarini; James F. Whitfield; Clara Bonafini; Balu Chakravarthy; Ubaldo Armato; Ilaria Dal Prà

Cerebrovascular angiopathy affects late-onset Alzheimers disease (LOAD) brains by possibly increasing vascular endothelial growth factor (VEGF). A expression, thereby stimulating endothelial cell proliferation and migration. Indeed, VEGF-A gene upregulation, with increased VEGF-A protein content of reactive astrocytes and microglia, occurs in LOAD brains, and neovascularization was observed one week after injecting amyloid-β (Aβ)(1-42) into rat hippocampus. We have now found, with cultured normoxic normal adult human astrocytes (NAHAs), that fibrillar Aβ(25-35) (an active Aβ(1-42) fragment) or a cytokine mixture (the (CM)-trio (interleukin [IL]-1β+interferon [IFN]-γ+tumor necrosis factor [TNF]-α), or pair (IFN-γ+TNF-α) like those produced in LOAD brains) stimulates the nuclear translocation of stabilized hypoxia-inducible factor (HIF)-1α protein and its binding to VEGF-A hypoxia-response elements; the mRNA synthesis for three VEGF-A splice variants (121, 165, 189); and the secretion of VEGF-A165. The CM-trio was the most powerful stimulus, IFN-γ+TNF-α was less potent, and other cytokine pairs or single cytokines or Aβ(35-25) were ineffective. While Aβ(25-35) did not change HIF-1β protein levels, the CM-trio increased both HIF-1α and HIF-1β protein levels, thereby giving an earlier and stronger stimulus to VEGF-A secretion by NAHAs. Thus, increased VEGF-A secretion from astrocytes stimulated by Aβ(1-42) and by microglia-released cytokines might restore angiogenesis and Aβ(1-42) vascular clearance.


The Neuroscientist | 2015

Do Astrocytes Collaborate with Neurons in Spreading the “Infectious” Aβ and Tau Drivers of Alzheimer’s Disease?

Ilaria Dal Prà; Anna Chiarini; Li Gui; Balu Chakravarthy; Raffaella Pacchiana; Emanuela Gardenal; James F. Whitfield; Ubaldo Armato

Evidence has begun emerging for the “contagious” and destructive Aβ42 (amyloid-beta42) oligomers and phosphorylated Tau oligomers as drivers of sporadic Alzheimer’s disease (AD), which advances along a pathway starting from the brainstem or entorhinal cortex and leading to cognition-related upper cerebral cortex regions. Seemingly, Aβ42 oligomers trigger the events generating the neurotoxic Tau oligomers, which may even by themselves spread the characteristic AD neuropathology. It has been assumed that only neurons make and spread these toxic drivers, whereas their associated astrocytes are just janitorial bystanders/scavengers. But this view is likely to radically change since normal human astrocytes freshly isolated from adult cerebral cortex can be induced by exogenous Aβ25-35, an Aβ42 proxy, to make and secrete increased amounts of endogenous Aβ42. Thus, it would seem that the steady slow progression of AD neuropathology along specific cognition-relevant brain networks is driven by both Aβ42 and phosphorylated Tau oligomers that are variously released from increasing numbers of “contagion-stricken” members of tightly coupled neuron–astrocyte teams. Hence, we surmise that stopping the oversecretion and spread of the two kinds of “contagious” oligomers by such team members, perhaps via a specific CaSR (Ca2+-sensing receptor) antagonist like NPS 2143, might effectively treat AD.


Current Pharmaceutical Biotechnology | 2009

Calcium-Sensing Receptor (CaSR) in Human Brains Pathophysiology: Roles in Late-Onset Alzheimers Disease (LOAD)

Anna Chiarini; Ilaria Dal Prà; M. Marconi; Balu Chakravarthy; James F. Whitfield; Ubaldo Armato

Although the calcium-sensing receptor (CaSR) is expressed by all types of nerve cells in widespread areas of the human central nervous system (CNS), so far its roles in brain pathophysiology remain largely unknown. Here, we review the available evidence concerning the stages of development of sporadic late-onset Alzheimers disease (LOAD) and the roles therein played by CaSR signaling. As the brain ages, its ability to dispose of dangerous synapse-targeting soluble amyloid beta-(1-42) (sAbeta42) oligomers released from normal neuronal activity declines. As their levels slowly rise, these oligomers increasingly target and eliminate synapses and prevent synapse formation, thereby eroding the foundations of memory formation and cognitive functions. In this initial stage, neurons, even though synaptically impaired, remain alive. Concurrently, sAbeta42 oligomers by binding to CaSR on human astrocytes induce via mitogen activated protein kinase (MAPK) activity the release of huge amounts nitric oxide (NO), which by itself and after conversion to peroxynitrite (ONOO(-)) damages neighboring neurons. When the sAbeta42 oligomers increasingly aggregate into fibrillar plaques, they attract and activate microglial macrophages that, while trying to clear the plaques, produce via Abeta-activated CaSR signaling several proinflammatory cytokines and reactive oxygen species (ROS). Notably, the microglial cytokines, like sAbeta42 oligomers, induce human astrocytes to make large amounts of NO and hence ONOO(-) via CaSR signal-dependent MAPK activity. The microglial cytokines-activated astrocytes might also produce their own sAbeta42, which would combine with neuron- and microglia-released sAbeta42 to increase the fibrillar burden and promote the further production of reactive oxygen species (ROS), NO/ONOO(-), and proinflammatory cytokines to efficiently kill both normal and functionally impaired (undead) neurons. But, on a somewhat positive note, we speculate that the astrocytes CaSR-stimulated MAPK activities might also induce vascular endothelial growth factor (VEGF) expression and production. This might in turn enhance neuronal stem cells neurogenesis at least in the subgranular zone (SGZ) of the hippocampal dentate gyrus.


Neuromolecular Medicine | 2014

The Aβ Peptides-Activated Calcium-Sensing Receptor Stimulates the Production and Secretion of Vascular Endothelial Growth Factor-A by Normoxic Adult Human Cortical Astrocytes

Ilaria Dal Prà; Ubaldo Armato; Franco Chioffi; Raffaella Pacchiana; James F. Whitfield; Balu Chakravarthy; Li Gui; Anna Chiarini

The excess vascular endothelial growth factor (VEGF) produced in the Alzheimer’s disease (AD) brain can harm neurons, blood vessels, and other components of the neurovascular units (NVUs). But could astrocytes partaking in networks of astrocyte-neuron teams and connected to blood vessels of NVUs contribute to VEGF production? We have shown with cultured cerebral cortical normal (i.e., untransformed) adult human astrocytes (NAHAs) that exogenous amyloid-β peptides (Aβs) stimulate the astrocytes to make and secrete large amounts of Aβs and nitric oxide by a mechanism mediated through the calcium-sensing receptor (CaSR). Here, we report that exogenous Aβs stimulate the NAHAs to produce and secrete even VEGF-A through a CaSR-mediated mechanism. This is indicated by the ability of Aβs to specifically bind the CaSR, and the capability of a CaSR activator, the “calcimimetic” NPS R-568, to imitate, and of the CaSR antagonist, “calcilytic” NPS 2143, to inhibit, the Aβs stimulation of VEGF-A production and secretion by the NAHAs. Thus, Aβs that accumulate in the AD brain may make the astrocytes that envelop and functionally collaborate with neurons into multi-agent AD-driving “machines” via a CaSR signaling mechanism(s). These observations suggest the possibility that CaSR allosteric antagonists such as NPS 2143 might impede AD progression.


Biochimica et Biophysica Acta | 2013

Calcium-sensing receptor antagonist (calcilytic) NPS 2143 specifically blocks the increased secretion of endogenous Aβ42 prompted by exogenous fibrillary or soluble Aβ25–35 in human cortical astrocytes and neurons—Therapeutic relevance to Alzheimer's disease

Ubaldo Armato; Anna Chiarini; Balu Chakravarthy; Franco Chioffi; Raffaella Pacchiana; E. Colarusso; James F. Whitfield; Ilaria Dal Prà

The amyloid-β (Aβ) hypothesis posits that accumulating Aβ peptides (Aβs) produced by neurons cause Alzheimers disease (AD). However, the Aβs contribution by the more numerous astrocytes remains undetermined. Previously we showed that fibrillar (f)Aβ25-35, an Aβ42 proxy, evokes a surplus endogenous Aβ42 production/accumulation in cortical adult human astrocytes. Here, by using immunocytochemistry, immunoblotting, enzymatic assays, and highly sensitive sandwich ELISA kits, we investigated the effects of fAβ25-35 and soluble (s)Aβ25-35 on Aβ42 and Aβ40 accumulation/secretion by human cortical astrocytes and HCN-1A neurons and, since the calcium-sensing receptor (CaSR) binds Aβs, their modulation by NPS 2143, a CaSR allosteric antagonist (calcilytic). The fAβ25-35-exposed astrocytes and surviving neurons produced, accumulated, and secreted increased amounts of Aβ42, while Aβ40 also accrued but its secretion was unchanged. Accordingly, secreted Aβ42/Aβ40 ratio values rose for astrocytes and neurons. While slightly enhancing Aβ40 secretion by fAβ25-35-treated astrocytes, NPS 2143 specifically suppressed the fAβ25-35-elicited surges of endogenous Aβ42 secretion by astrocytes and neurons. Therefore, NPS 2143 addition always kept Aβ42/Aβ40 values to baseline or lower levels. Mechanistically, NPS 2143 decreased total CaSR protein complement, transiently raised proteasomal chymotrypsin activity, and blocked excess NO production without affecting the ongoing increases in BACE1/β-secretase and γ-secretase activity in fAβ25-35-treated astrocytes. Compared to fAβ25-35, sAβ25-35 also stimulated Aβ42 secretion by astrocytes and neurons and NPS 2143 specifically and wholly suppressed this effect. Therefore, since NPS 2143 thwarts any Aβ/CaSR-induced surplus secretion of endogenous Aβ42 and hence further vicious cycles of Aβ self-induction/secretion/spreading, calcilytics might effectively prevent/stop the progression to full-blown AD.

Collaboration


Dive into the Anna Chiarini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge