Anna Craig
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anna Craig.
Journal of Renewable and Sustainable Energy | 2014
Daniel Araya; Anna Craig; Matthias Kinzel; John O. Dabiri
We develop and characterize a low-order model of the mean flow through an array of vertical-axis wind turbines (VAWTs), consisting of a uniform flow and pairs of potential sources and sinks to represent each VAWT. The source and sink in each pair are of unequal strength, thereby forming a “leaky Rankine body” (LRB). In contrast to a classical Rankine body, which forms closed streamlines around a bluff body in potential flow, the LRB streamlines have a qualitatively similar appearance to a separated bluff body wake; hence, the LRB concept is used presently to model the VAWT wake. The relative strengths of the source and sink are determined from first principles analysis of an actuator disk model of the VAWTs. The LRB model is compared with field measurements of various VAWT array configurations measured over a 3-yr campaign. It is found that the LRB model correctly predicts the ranking of array performances to within statistical certainty. Furthermore, by using the LRB model to predict the flow around two-turbine and three-turbine arrays, we show that there are two competing fluid dynamic mechanisms that contribute to the overall array performance: turbine blockage, which locally accelerates the flow; and turbine wake formation, which locally decelerates the flow as energy is extracted. A key advantage of the LRB model is that optimal turbine array configurations can be found with significantly less computational expense than higher fidelity numerical simulations of the flow and much more rapidly than in experiments.
Journal of Fluids Engineering-transactions of The Asme | 2016
Anna Craig; John O. Dabiri; Jeffrey R. Koseff
Experimental data are presented for large arrays of rotating, variable-height cylinders in order to study the dependence of the three-dimensional mean flows on the height heterogeneity of the array. Elements in the examined arrays were spatially arranged in the same staggered paired configuration, and the heights of each element pair varied up to 637.5% from the mean height (kept constant across all arrays), such that the arrays were vertically structured. Four vertical structuring configurations were examined at a nominal Reynolds number (based on freestream velocity and cylinder diameter) of 600 and nominal tip-speed ratios of 0, 2, and 4. It was found that the vertical structuring of the array could significantly alter the mean flow patterns. Most notably, a net vertical flow into the array from above was observed, which was augmented by the arrays’ vertical structuring, showing a 75% increase from the lowest to highest vertical flows (as evaluated at the maximum element height, at a single rotation rate). This vertical flow into the arrays is of particular interest as it represents an additional mechanism by which high streamwise momentum can be transported from above the array down into the array. An evaluation of the streamwise momentum resource within the array indicates up to a 56% increase in the incoming streamwise velocity to the elements (from the lowest to highest ranking arrays, at a single rotation rate). These arrays of rotating cylinders may provide insight into the flow kinematics of arrays of vertical axis wind turbines (VAWTs). In a physical VAWT array, an increase in incoming streamwise flow velocity to a turbine corresponds to a (cubic) increase in the power output of the turbine. Thus, these results suggest a promising approach to increasing the power output of a VAWT array. [DOI: 10.1115/1.4033676]
Journal of Fluids Engineering-transactions of The Asme | 2016
Anna Craig; John O. Dabiri; Jeffrey R. Koseff
Experimental data are presented for large arrays of rotating, finite-height cylinders to study the dependence of the three-dimensional (3D) mean flows on the geometric and rotational configurations of the array. Two geometric configurations, each with two rotational configurations, were examined at a nominal Reynolds number of 600 and nominal tip-speed ratios of 0, 2, and 4. It was found that the rotation of the cylinders drives the formation of streamwise and transverse flow patterns between cylinders and that net time–space averaged transverse and vertical flows exist within the developed flow region of the array. This net vertical mean flow provides an additional mechanism for the exchange of momentum between the flow within the array and the flow above it, independent from the turbulent exchange mechanisms which are also observed to increase by almost a factor of three in a rotating array. As an array of rotating cylinders may provide insight into the flow kinematics of an array of vertical axis wind turbines (VAWTs), this planform momentum flux (both mean and turbulent) is of particular interest, as it has the potential to increase the energy resource available to turbines far downstream of the leading edge of the array. In the present study, the streamwise momentum flux into the array could be increased for the rotating-element arrays by up to a factor of 5.7 compared to the stationary-element arrays, while the streamwise flow frontally averaged over the elements could be increased by up to a factor of four in the rotating-element arrays compared to stationary-element arrays.
Journal of Renewable and Sustainable Energy | 2017
Anna Craig; John O. Dabiri; Jeffrey R. Koseff
In order to examine the ability of low-order physical models of vertical axis wind turbines to accurately reproduce key flow characteristics, experimental data are presented for the mean flow patterns and turbulence spectra associated with pairs of rotating turbines, rotating solid cylinders, and stationary porous flat plates (of both uniform and non-uniform porosities). The experiments were conducted at a nominal model-diameter Reynolds number of 600 and rotation tip speed ratios between 0 and 6. By comparing the induced flow fields of the different models both qualitatively and quantitatively, it was concluded that the two dimensional horizontal mean flow fields induced by the porous flat plates were quantitatively similar to those induced by slowly rotating turbine models. However, over the range of the experimental parameters examined, the porous flat plates were unable to produce vertical flows similar to those associated with the slowly rotating turbine models. Conversely, the moderately rotating cy...
Archive | 2012
Anna Craig; John O. Dabiri
Experiments in Fluids | 2014
Joel Weitzman; Lianna Samuel; Anna Craig; Robert Zeller; Stephen G. Monismith; Jeffrey R. Koseff
Bulletin of the American Physical Society | 2015
Anna Craig; John O. Dabiri; Jeffrey R. Koseff
Archive | 2014
Anna Craig; John O. Dabiri
Bulletin of the American Physical Society | 2014
Joel Weitzman; Lianna Samuel; Anna Craig; Robert Zeller; Stephen G. Monismith; Jeffrey R. Koseff
Bulletin of the American Physical Society | 2014
Anna Craig; John O. Dabiri; Jeffrey R. Koseff