Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Darabi is active.

Publication


Featured researches published by Anna Darabi.


Molecular Therapy | 2009

Bone Marrow Multipotent Mesenchymal Stroma Cells Act as Pericyte-like Migratory Vehicles in Experimental Gliomas.

Daniel Bexell; Salina Gunnarsson; Ariane Tormin; Anna Darabi; David Gisselsson; Laurent Roybon; Stefan Scheding; Johan Bengzon

Bone marrow-derived multipotent mesenchymal stroma cells (MSCs) have emerged as cellular vectors for gene therapy of solid cancers. We implanted enhanced green fluorescent protein-expressing rat MSCs directly into rat malignant gliomas to address their migratory capacity, phenotype, and effects on tumor neovascularization and animal survival. A single intratumoral injection of MSCs infiltrated the majority of invasive glioma extensions (72 +/- 14%) and a substantial fraction of distant tumor microsatellites (32 +/- 6%). MSC migration was highly specific for tumor tissue. Grafted MSCs integrated into tumor vessel walls and expressed pericyte markers alpha-smooth muscle actin, neuron-glia 2, and platelet-derived growth factor receptor-beta but not endothelial cell markers. The pericyte marker expression profile and perivascular location of grafted MSCs indicate that these cells act as pericytes within tumors. MSC grafting did not influence tumor microvessel density or survival of tumor-bearing animals. The antiangiogenic drug Sunitinib markedly reduced the numbers of grafted MSCs migrating within tumors. We found no MSCs within gliomas following intravenous (i.v.) injections. Thus, MSCs should be administered by intratumoral implantations rather than by i.v. injections. Intratumorally grafted pericyte-like MSCs might represent a particularly well-suited vector system for delivering molecules to affect tumor angiogenesis and for targeting cancer stem cells within the perivascular niche.


Nature | 2014

Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma.

Paul A. Northcott; C A Lee; Thomas Zichner; Adrian M. Stütz; Serap Erkek; Daisuke Kawauchi; David Shih; Volker Hovestadt; Marc Zapatka; Dominik Sturm; David T. W. Jones; Marcel Kool; Marc Remke; Florence M.G. Cavalli; Scott Zuyderduyn; Gary D. Bader; Scott R. VandenBerg; Lourdes Adriana Esparza; Marina Ryzhova; Wei Wang; Andrea Wittmann; Sebastian Stark; Laura Sieber; Huriye Seker-Cin; Linda Linke; Fabian Kratochwil; Natalie Jäger; Ivo Buchhalter; Charles D. Imbusch; Gideon Zipprich

Medulloblastoma is a highly malignant paediatric brain tumour currently treated with a combination of surgery, radiation and chemotherapy, posing a considerable burden of toxicity to the developing child. Genomics has illuminated the extensive intertumoral heterogeneity of medulloblastoma, identifying four distinct molecular subgroups. Group 3 and group 4 subgroup medulloblastomas account for most paediatric cases; yet, oncogenic drivers for these subtypes remain largely unidentified. Here we describe a series of prevalent, highly disparate genomic structural variants, restricted to groups 3 and 4, resulting in specific and mutually exclusive activation of the growth factor independent 1 family proto-oncogenes, GFI1 and GFI1B. Somatic structural variants juxtapose GFI1 or GFI1B coding sequences proximal to active enhancer elements, including super-enhancers, instigating oncogenic activity. Our results, supported by evidence from mouse models, identify GFI1 and GFI1B as prominent medulloblastoma oncogenes and implicate ‘enhancer hijacking’ as an efficient mechanism driving oncogene activation in a childhood cancer.


Journal of Clinical Investigation | 2011

Detection of human cytomegalovirus in medulloblastomas reveals a potential therapeutic target

Ninib Baryawno; Afsar Rahbar; Nina Wolmer-Solberg; Chato Taher; Jenny Odeberg; Anna Darabi; Zahidul Khan; Baldur Sveinbjørnsson; Ole Martin Fuskevåg; Lova Segerström; Magnus Nordenskjöld; Peter Siesjö; Per Kogner; John Inge Johnsen; Cecilia Söderberg-Nauclér

Medulloblastomas are the most common malignant brain tumors in children. They express high levels of COX-2 and produce PGE2, which stimulates tumor cell proliferation. Human cytomegalovirus (HCMV) is prevalent in the human population and encodes proteins that provide immune evasion strategies and promote oncogenic transformation and oncomodulation. In particular, HCMV induces COX-2 expression; STAT3 phosphorylation; production of PGE2, vascular endothelial growth factor, and IL-6; and tumor formation in vivo. Here, we show that a large proportion of primary medulloblastomas and medulloblastoma cell lines are infected with HCMV and that COX-2 expression, along with PGE2 levels, in tumors is directly modulated by the virus. Our analysis indicated that both HCMV immediate-early proteins and late proteins are expressed in the majority of primary medulloblastomas. Remarkably, all of the human medulloblastoma cell lines that we analyzed contained HCMV DNA and RNA and expressed HCMV proteins at various levels in vitro. When engrafted into immunocompromised mice, human medulloblastoma cells induced expression of HCMV proteins. HCMV and COX-2 expression correlated in primary tumors, cell lines, and medulloblastoma xenografts. The antiviral drug valganciclovir and the specific COX-2 inhibitor celecoxib prevented HCMV replication in vitro and inhibited PGE2 production and reduced medulloblastoma tumor cell growth both in vitro and in vivo. Ganciclovir did not affect the growth of HCMV-negative tumor cell lines. These findings imply an important role for HCMV in medulloblastoma and suggest HCMV as a novel therapeutic target for this tumor.


Cancer Immunology, Immunotherapy | 2009

Tumor eradication after cyclophosphamide depends on concurrent depletion of regulatory T cells: a role for cycling TNFR2-expressing effector-suppressor T cells in limiting effective chemotherapy

Robbert G. van der Most; Andrew J. Currie; Sathish Mahendran; Amy Prosser; Anna Darabi; Bruce W. S. Robinson; Anna K. Nowak; Richard A. Lake

Tumor cell death potentially engages with the immune system. However, the efficacy of anti-tumor chemotherapy may be limited by tumor-driven immunosuppression, e.g., through CD25+ regulatory T cells. We addressed this question in a mouse model of mesothelioma by depleting or reconstituting CD25+ regulatory T cells in combination with two different chemotherapeutic drugs. We found that the efficacy of cyclophosphamide to eradicate established tumors, which has been linked to regulatory T cell depletion, was negated by adoptive transfer of CD25+ regulatory T cells. Analysis of post-chemotherapy regulatory T cell populations revealed that cyclophosphamide depleted cycling (Ki-67hi) T cells, including foxp3+ regulatory CD4+ T cells. Ki-67hi CD4+ T cells expressed increased levels of two markers, TNFR2 and ICOS, that have been associated with a maximally suppressive phenotype according to recently published studies. This suggest that cyclophosphamide depletes a population of maximally suppressive regulatory T cells, which may explain its superior anti-tumor efficacy in our model. Our data suggest that regulatory T cell depletion could be used to improve the efficacy of anti-cancer chemotherapy regimens. Indeed, we observed that the drug gemcitabine, which does not deplete cycling regulatory T cells, eradicates established tumors in mice only when CD25+ CD4+ T cells are concurrently depleted. Cyclophosphamide could be used to achieve regulatory T cell depletion in combination with chemotherapy.


The Journal of Neuroscience | 2013

PD-L1 Expression by Neurons Nearby Tumors Indicates Better Prognosis in Glioblastoma Patients

Yawei Liu; Robert Carlsson; Malene Ambjørn; Maruf Hasan; Wiaam Badn; Anna Darabi; Peter Siesjö; Shohreh Issazadeh-Navikas

Glioblastoma multiforme (GBM) is the most aggressive form of brain tumor. In general, tumor growth requires disruption of the tissue microenvironment, yet how this affects glioma progression is unknown. We studied program death-ligand (PD-L)1 in neurons and gliomas in tumors from GBM patients and associated the findings with clinical outcome. Remarkably, we found that upregulation of PD-L1 by neurons in tumor-adjacent brain tissue (TABT) associated positively with GBM patient survival, whereas lack of neuronal PD-L1 expression was associated with high PD-L1 in tumors and unfavorable prognosis. To understand the molecular mechanism of PD-L1 signaling in neurons, we investigated PD-L1 function in cerebellar and cortical neurons and its impact on gliomas. We discovered that neuronal PD-L1-induced caspase-dependent apoptosis of glioma cells. Because interferon (IFN)-β induces PD-L1 expression, we studied the functional consequences of neuronal Ifnb gene deletion on PD-L1 signaling and function. Ifnb−/− neurons lacked PD-L1 and were defective in inducing glioma cell death; this effect was reversed on PD-L1 gene transfection. Ifnb−/− mice with intracerebral isografts survived poorly. Similar to the observations in GBM patients, better survival in wild-type mice was associated with high neuronal PD-L1 in TABT and downregulation of PD-L1 in tumors, which was defective in Ifnb−/− mice. Our data indicated that neuronal PD-L1 signaling in brain cells was important for GBM patient survival. Reciprocal PD-L1 regulation in TABT and tumor tissue could be a prognostic biomarker for GBM. Understanding the complex interactions between tumor and adjacent stromal tissue is important in designing targeted GBM therapies.


Nature Communications | 2015

Wnt/β-catenin pathway regulates MGMT gene expression in cancer and inhibition of Wnt signalling prevents chemoresistance

Malin Wickström; Cecilia Dyberg; Jelena Milosevic; Christer Einvik; Raul Calero; Baldur Sveinbjørnsson; Emma Sandén; Anna Darabi; Peter Siesjö; Marcel Kool; Per Kogner; Ninib Baryawno; John Inge Johnsen

The DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) is commonly overexpressed in cancers and is implicated in the development of chemoresistance. The use of drugs inhibiting MGMT has been hindered by their haematologic toxicity and inefficiency. As a different strategy to inhibit MGMT we investigated cellular regulators of MGMT expression in multiple cancers. Here we show a significant correlation between Wnt signalling and MGMT expression in cancers with different origin and confirm the findings by bioinformatic analysis and immunofluorescence. We demonstrate Wnt-dependent MGMT gene expression and cellular co-localization between active β-catenin and MGMT. Pharmacological or genetic inhibition of Wnt activity downregulates MGMT expression and restores chemosensitivity of DNA-alkylating drugs in mouse models. These findings have potential therapeutic implications for chemoresistant cancers, especially of brain tumours where the use of temozolomide is frequently used in treatment.


Journal of Neuroimmunology | 2010

Intratumoral IL-7 delivery by mesenchymal stromal cells potentiates IFNgamma-transduced tumor cell immunotherapy of experimental glioma.

Salina Gunnarsson; Daniel Bexell; Andreas Svensson; Peter Siesjö; Anna Darabi; Johan Bengzon

The present study reports regression of pre-established experimental rat gliomas as a result of combining peripheral immunization using interferon gamma (IFNgamma) transduced autologous tumor cells with local intratumoral delivery of interleukin 7 (IL-7) by mesenchymal stromal cells. IL-7 alone significantly decreased the tumor area and this effect was enhanced with IFNgamma immunization. A higher density of intratumoral T-cells was observed in animals receiving combined therapies compared to rats receiving either cytokine alone suggesting that the therapeutic effect is dependent on a T-cell response.


International Journal of Cancer | 2009

CD133+ and nestin+ tumor‐initiating cells dominate in N29 and N32 experimental gliomas

Daniel Bexell; Salina Gunnarsson; Peter Siesjö; Johan Bengzon; Anna Darabi

The current study was designed to critically evaluate the notion that cancer stem cell (CSC)‐like cells constitute a subpopulation of cells within experimental gliomas. Virtually all cells within the N29 and N32 rat glioma models homogenously expressed CD133, the stem/progenitor marker nestin as well as the neural lineage markers glial fibrillary acidic protein, βIII‐tubulin, and CNPase in vitro. The phenotype was largely retained on exposure to conditions promoting differentiation in vitro and after intracranial implantation of tumor cells into syngeneic hosts. Unsorted adherently grown cells displayed very high clonogenicity in vitro and robust tumorigenicity in vivo. Single N29 and N32 tumor cells invariably formed clones in vitro, and intracerebral inoculation of as few as 10 adherently growing N29 and N32 tumor cells, respectively, gave rise to a tumor. These results provide an alternative view on CSC‐like cells in glioma models: sphere‐formation is not a prerequisite for accumulation of tumorigenic cells, and CSC‐like cells do not reside within a rare subpopulation of cells in these glioma models. N29 and N32 gliomas may accordingly be used for the development of treatment strategies directed specifically against a practically pure population of brain tumor‐initiating CSC‐like cells.


Scientific Reports | 2015

Unequivocal identification of intracellular aluminium adjuvant in a monocytic THP-1 cell line

Matthew Mold; Håkan Eriksson; Peter Siesjö; Anna Darabi; Emma Shardlow; Christopher Exley

Aluminium-based adjuvants (ABA) are the predominant adjuvants used in human vaccinations. While a consensus is yet to be reached on the aetiology of the biological activities of ABA several studies have identified shape, crystallinity and size as critical factors affecting their adjuvanticity. In spite of recent advances, the fate of ABA following their administration remains unclear. Few if any studies have demonstrated the unequivocal presence of intracellular ABA. Herein we demonstrate for the first time the unequivocal identification of ABA within a monocytic T helper 1 (THP-1) cell line, using lumogallion as a fluorescent molecular probe for aluminium. Use of these new methods revealed that particulate ABA was only found in the cell cytoplasm. Transmission electron microscopy revealed that ABA were contained within vesicle-like structures of approximately 0.5–1 μm in diameter.


International Journal of Cancer | 2007

Synergism between GM-CSF and IFNgamma: Enhanced immunotherapy in mice with glioma.

Karin Enell Smith; Shorena Janelidze; Edward Visse; Wiaam Badn; Leif G. Salford; Peter Siesjö; Anna Darabi

Glioblastoma multiforme is the most common malignant primary brain tumor and also one of the most therapy‐resistant tumors. Because of the dismal prognosis, various therapies modulating the immune system have been developed in experimental models. Previously, we have shown a 37–70% cure in a rat glioma model where rats were peripherally immunized with tumor cells producing IFNγ. On the basis of these results, we wanted to investigate whether a combination of GM–CSF and IFNγ could improve the therapeutic effect in a mouse glioma model, GL261 (GL‐wt). Three biweekly intraperitoneal (i.p.) immunizations with irradiated GM–CSF‐transduced GL261 cells (GL‐GM) induced a 44% survival in mice with intracranial glioma. While treatment of GL‐wt and GL‐GM with IFNγ in vitro induced upregulation of MHC I and MHC II on the tumor cells, it could not enhance survival after immunization. However, immunizations with GL‐GM combined with recombinant IFNγ at the immunization site synergistically enhanced survival with a cure rate of 88%. Tumors from mice receiving only 1 immunization on Day 10 after tumor inoculation were sectioned on Day 20 for analysis of leukocyte infiltration. Tumor volume was reduced and the infiltration of macrophages was denser in mice immunized with GL‐GM combined with IFNγ compared with that of both wildtype and nonimmunized mice. To our knowledge, this is the first study to demonstrate a synergy between GM–CSF and IFNγ in experimental immunotherapy of tumors, by substantially increasing survival as well as inducing a potent anti‐tumor response after only 1 postponed immunization.

Collaboration


Dive into the Anna Darabi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge