Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna deFazio is active.

Publication


Featured researches published by Anna deFazio.


Nature | 2007

Patterns of somatic mutation in human cancer genomes

Christopher Greenman; Philip Stephens; Raffaella Smith; Gillian L. Dalgliesh; Chris Hunter; Graham R. Bignell; Helen Davies; Jon Teague; Adam Butler; Claire Stevens; Sarah Edkins; Sarah O’Meara; Imre Vastrik; Esther Schmidt; Tim Avis; Syd Barthorpe; Gurpreet Bhamra; Gemma Buck; Bhudipa Choudhury; Jody Clements; Jennifer Cole; Ed Dicks; Simon A. Forbes; Kris Gray; Kelly Halliday; Rachel Harrison; Katy Hills; Jon Hinton; Andy Jenkinson; David Jones

Cancers arise owing to mutations in a subset of genes that confer growth advantage. The availability of the human genome sequence led us to propose that systematic resequencing of cancer genomes for mutations would lead to the discovery of many additional cancer genes. Here we report more than 1,000 somatic mutations found in 274 megabases (Mb) of DNA corresponding to the coding exons of 518 protein kinase genes in 210 diverse human cancers. There was substantial variation in the number and pattern of mutations in individual cancers reflecting different exposures, DNA repair defects and cellular origins. Most somatic mutations are likely to be ‘passengers’ that do not contribute to oncogenesis. However, there was evidence for ‘driver’ mutations contributing to the development of the cancers studied in approximately 120 genes. Systematic sequencing of cancer genomes therefore reveals the evolutionary diversity of cancers and implicates a larger repertoire of cancer genes than previously anticipated.


Clinical Cancer Research | 2008

Novel Molecular Subtypes of Serous and Endometrioid Ovarian Cancer Linked to Clinical Outcome

Richard W. Tothill; Anna V. Tinker; Joshy George; Robert Brown; Stephen B. Fox; Stephen Lade; Daryl S. Johnson; Melanie Trivett; Dariush Etemadmoghadam; Bianca Locandro; Nadia Traficante; Sian Fereday; Jillian Hung; Yoke-Eng Chiew; Izhak Haviv; Dorota M. Gertig; Anna deFazio; David Bowtell

Purpose: The study aim to identify novel molecular subtypes of ovarian cancer by gene expression profiling with linkage to clinical and pathologic features. Experimental Design: Microarray gene expression profiling was done on 285 serous and endometrioid tumors of the ovary, peritoneum, and fallopian tube. K-means clustering was applied to identify robust molecular subtypes. Statistical analysis identified differentially expressed genes, pathways, and gene ontologies. Laser capture microdissection, pathology review, and immunohistochemistry validated the array-based findings. Patient survival within k-means groups was evaluated using Cox proportional hazards models. Class prediction validated k-means groups in an independent dataset. A semisupervised survival analysis of the array data was used to compare against unsupervised clustering results. Results: Optimal clustering of array data identified six molecular subtypes. Two subtypes represented predominantly serous low malignant potential and low-grade endometrioid subtypes, respectively. The remaining four subtypes represented higher grade and advanced stage cancers of serous and endometrioid morphology. A novel subtype of high-grade serous cancers reflected a mesenchymal cell type, characterized by overexpression of N-cadherin and P-cadherin and low expression of differentiation markers, including CA125 and MUC1. A poor prognosis subtype was defined by a reactive stroma gene expression signature, correlating with extensive desmoplasia in such samples. A similar poor prognosis signature could be found using a semisupervised analysis. Each subtype displayed distinct levels and patterns of immune cell infiltration. Class prediction identified similar subtypes in an independent ovarian dataset with similar prognostic trends. Conclusion: Gene expression profiling identified molecular subtypes of ovarian cancer of biological and clinical importance.


Journal of Clinical Oncology | 2012

BRCA Mutation Frequency and Patterns of Treatment Response in BRCA Mutation–Positive Women With Ovarian Cancer: A Report From the Australian Ovarian Cancer Study Group

Kathryn Alsop; Sian Fereday; Cliff Meldrum; Anna deFazio; Catherine Emmanuel; Joshy George; Alexander Dobrovic; Michael J. Birrer; Penelope M. Webb; Colin J.R. Stewart; Michael Friedlander; Stephen B. Fox; David Bowtell; Gillian Mitchell

PURPOSE The frequency of BRCA1 and BRCA2 germ-line mutations in women with ovarian cancer is unclear; reports vary from 3% to 27%. The impact of germ-line mutation on response requires further investigation to understand its impact on treatment planning and clinical trial design. PATIENTS AND METHODS Women with nonmucinous ovarian carcinoma (n = 1,001) enrolled onto a population-based, case-control study were screened for point mutations and large deletions in both genes. Survival outcomes and responses to multiple lines of chemotherapy were assessed. RESULTS Germ-line mutations were found in 14.1% of patients overall, including 16.6% of serous cancer patients (high-gradeserous, 17.1%); [corrected] 44% had no reported family history of breast orovarian cancer.Patients carrying germ-line mutations had improved rates of progression-free and overall survival. In the relapse setting, patients carrying mutations more frequently responded to both platin- and nonplatin-based regimens than mutation-negative patients, even in patients with early relapse after primary treatment. Mutation-negative patients who responded to multiple cycles of platin-based treatment were more likely to carry somatic BRCA1/2 mutations. CONCLUSION BRCA mutation status has a major influence on survival in ovarian cancer patients and should be an additional stratification factor in clinical trials. Treatment outcomes in BRCA1/2 carriers challenge conventional definitions of platin resistance, and mutation status may be able to contribute to decision making and systemic therapy selection in the relapse setting. Our data, together with the advent of poly(ADP-ribose) polymerase inhibitor trials, supports the recommendation that germ-line BRCA1/2 testing should be offered to all women diagnosed with nonmucinous, ovarian carcinoma, regardless of family history.


The New England Journal of Medicine | 2009

Mutation of FOXL2 in granulosa-cell tumors of the ovary

Sohrab P. Shah; Martin Köbel; Janine Senz; Ryan D. Morin; Blaise Clarke; Kimberly C. Wiegand; Gillian Leung; Abdalnasser Zayed; Erika Mehl; Steve E. Kalloger; Mark Sun; Ryan Giuliany; Erika Yorida; Steven J.M. Jones; Richard Varhol; Kenneth D. Swenerton; Dianne Miller; Philip B. Clement; Colleen Crane; Jason Madore; Diane Provencher; Peter C. K. Leung; Anna deFazio; Jaswinder Khattra; Gulisa Turashvili; Yongjun Zhao; Thomas Zeng; J.N. Mark Glover; Barbara C. Vanderhyden; Chengquan Zhao

BACKGROUND Granulosa-cell tumors (GCTs) are the most common type of malignant ovarian sex cord-stromal tumor (SCST). The pathogenesis of these tumors is unknown. Moreover, their histopathological diagnosis can be challenging, and there is no curative treatment beyond surgery. METHODS We analyzed four adult-type GCTs using whole-transcriptome paired-end RNA sequencing. We identified putative GCT-specific mutations that were present in at least three of these samples but were absent from the transcriptomes of 11 epithelial ovarian tumors, published human genomes, and databases of single-nucleotide polymorphisms. We confirmed these variants by direct sequencing of complementary DNA and genomic DNA. We then analyzed additional tumors and matched normal genomic DNA, using a combination of direct sequencing, analyses of restriction-fragment-length polymorphisms, and TaqMan assays. RESULTS All four index GCTs had a missense point mutation, 402C-->G (C134W), in FOXL2, a gene encoding a transcription factor known to be critical for granulosa-cell development. The FOXL2 mutation was present in 86 of 89 additional adult-type GCTs (97%), in 3 of 14 thecomas (21%), and in 1 of 10 juvenile-type GCTs (10%). The mutation was absent in 49 SCSTs of other types and in 329 unrelated ovarian or breast tumors. CONCLUSIONS Whole-transcriptome sequencing of four GCTs identified a single, recurrent somatic mutation (402C-->G) in FOXL2 that was present in almost all morphologically identified adult-type GCTs. Mutant FOXL2 is a potential driver in the pathogenesis of adult-type GCTs.


The Journal of Pathology | 2010

Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary

Ahmed Ashour Ahmed; Dariush Etemadmoghadam; Jillian Temple; Andy G. Lynch; Mohamed Riad; Raghwa Sharma; Colin J.R. Stewart; Sian Fereday; Carlos Caldas; Anna deFazio; David Bowtell; James D. Brenton

Numerous studies have tested the association between TP53 mutations in ovarian cancer and prognosis but these have been consistently confounded by limitations in study design, methodology, and/or heterogeneity in the sample cohort. High‐grade serous (HGS) carcinoma is the most clinically important histological subtype of ovarian cancer. As these tumours may arise from the ovary, Fallopian tube or peritoneum, they are collectively referred to as high‐grade pelvic serous carcinoma (HGPSC). To identify the true prevalence of TP53 mutations in HGPSC, we sequenced exons 2–11 and intron–exon boundaries in tumour DNA from 145 patients. HGPSC cases were defined as having histological grade 2 or 3 and FIGO stage III or IV. Surprisingly, pathogenic TP53 mutations were identified in 96.7% (n = 119/123) of HGPSC cases. Molecular and pathological review of mutation‐negative cases showed evidence of p53 dysfunction associated with copy number gain of MDM2 or MDM4, or indicated the exclusion of samples as being low‐grade serous tumours or carcinoma of uncertain primary site. Overall, p53 dysfunction rate approached 100% of confirmed HGPSCs. No association between TP53 mutation and progression‐free or overall survival was found. From this first comprehensive mapping of TP53 mutation rate in a homogeneous group of HGPSC patients, we conclude that mutant TP53 is a driver mutation in the pathogenesis of HGPSC cancers. Because TP53 mutation is almost invariably present in HGPSC, it is not of substantial prognostic or predictive significance. Copyright


Nature | 2015

Whole–genome characterization of chemoresistant ovarian cancer

Ann-Marie Patch; Elizabeth L. Christie; Dariush Etemadmoghadam; Dale W. Garsed; Joshy George; Sian Fereday; Katia Nones; Prue Cowin; Kathryn Alsop; Peter Bailey; Karin S. Kassahn; Felicity Newell; Michael Quinn; Stephen Kazakoff; Kelly Quek; Charlotte Wilhelm-Benartzi; Ed Curry; Huei San Leong; Anne Hamilton; Linda Mileshkin; George Au-Yeung; Catherine Kennedy; Jillian Hung; Yoke-Eng Chiew; Paul Harnett; Michael Friedlander; Jan Pyman; Stephen M. Cordner; Patricia O’Brien; Jodie Leditschke

Patients with high-grade serous ovarian cancer (HGSC) have experienced little improvement in overall survival, and standard treatment has not advanced beyond platinum-based combination chemotherapy, during the past 30 years. To understand the drivers of clinical phenotypes better, here we use whole-genome sequencing of tumour and germline DNA samples from 92 patients with primary refractory, resistant, sensitive and matched acquired resistant disease. We show that gene breakage commonly inactivates the tumour suppressors RB1, NF1, RAD51B and PTEN in HGSC, and contributes to acquired chemotherapy resistance. CCNE1 amplification was common in primary resistant and refractory disease. We observed several molecular events associated with acquired resistance, including multiple independent reversions of germline BRCA1 or BRCA2 mutations in individual patients, loss of BRCA1 promoter methylation, an alteration in molecular subtype, and recurrent promoter fusion associated with overexpression of the drug efflux pump MDR1.


Clinical Cancer Research | 2009

Integrated Genome-Wide DNA Copy Number and Expression Analysis Identifies Distinct Mechanisms of Primary Chemoresistance in Ovarian Carcinomas

Dariush Etemadmoghadam; Anna deFazio; Rameen Beroukhim; Craig H. Mermel; Joshy George; Gad Getz; Richard W. Tothill; Aikou Okamoto; Maria B. Ræder; Paul Harnett; Stephen Lade; Lars A. Akslen; Anna V. Tinker; Bianca Locandro; Kathryn Alsop; Yoke-Eng Chiew; Nadia Traficante; Sian Fereday; Daryl S. Johnson; Stephen B. Fox; William R. Sellers; Mitsuyoshi Urashima; Helga B. Salvesen; Matthew Meyerson; David Bowtell

Purpose: A significant number of women with serous ovarian cancer are intrinsically refractory to platinum-based treatment. We analyzed somatic DNA copy number variation and gene expression data to identify key mechanisms associated with primary resistance in advanced-stage serous cancers. Experimental Design: Genome-wide copy number variation was measured in 118 ovarian tumors using high-resolution oligonucleotide microarrays. A well-defined subset of 85 advanced-stage serous tumors was then used to relate copy number variation to primary resistance to treatment. The discovery-based approach was complemented by quantitative-PCR copy number analysis of 12 candidate genes as independent validation of previously reported associations with clinical outcome. Likely copy number variation targets and tumor molecular subtypes were further characterized by gene expression profiling. Results: Amplification of 19q12, containing cyclin E (CCNE1), and 20q11.22-q13.12, mapping immediately adjacent to the steroid receptor coactivator NCOA3, was significantly associated with poor response to primary treatment. Other genes previously associated with copy number variation and clinical outcome in ovarian cancer were not associated with primary treatment resistance. Chemoresistant tumors with high CCNE1 copy number and protein expression were associated with increased cellular proliferation but so too was a subset of treatment-responsive patients, suggesting a cell-cycle independent role for CCNE1 in modulating chemoresponse. Patients with a poor clinical outcome without CCNE1 amplification overexpressed genes involved in extracellular matrix deposition. Conclusions: We have identified two distinct mechanisms of primary treatment failure in serous ovarian cancer, involving CCNE1 amplification and enhanced extracellular matrix deposition. CCNE1 copy number is validated as a dominant marker of patient outcome in ovarian cancer.


Lancet Oncology | 2013

Hormone-receptor expression and ovarian cancer survival: an Ovarian Tumor Tissue Analysis consortium study

Weiva Sieh; Martin Köbel; Teri A. Longacre; David Bowtell; Anna deFazio; Marc T. Goodman; Estrid Høgdall; Suha Deen; Nicolas Wentzensen; Kirsten B. Moysich; James D. Brenton; Blaise Clarke; Usha Menon; C. Blake Gilks; Andre Kim; Jason Madore; Sian Fereday; Joshy George; Laura Galletta; Galina Lurie; Lynne R. Wilkens; Michael E. Carney; Pamela J. Thompson; Rayna K. Matsuno; Susanne K. Kjaer; Allan Jensen; Claus Høgdall; Kimberly R. Kalli; Brooke L. Fridley; Gary L. Keeney

BACKGROUND Few biomarkers of ovarian cancer prognosis have been established, partly because subtype-specific associations might be obscured in studies combining all histopathological subtypes. We examined whether tumour expression of the progesterone receptor (PR) and oestrogen receptor (ER) was associated with subtype-specific survival. METHODS 12 studies participating in the Ovarian Tumor Tissue Analysis consortium contributed tissue microarray sections and clinical data to our study. Participants included in our analysis had been diagnosed with invasive serous, mucinous, endometrioid, or clear-cell carcinomas of the ovary. For a patient to be eligible, tissue microarrays, clinical follow-up data, age at diagnosis, and tumour grade and stage had to be available. Clinical data were obtained from medical records, cancer registries, death certificates, pathology reports, and review of histological slides. PR and ER statuses were assessed by central immunohistochemistry analysis done by masked pathologists. PR and ER staining was defined as negative (<1% tumour cell nuclei), weak (1 to <50%), or strong (≥50%). Associations with disease-specific survival were assessed. FINDINGS 2933 women with invasive epithelial ovarian cancer were included: 1742 with high-grade serous carcinoma, 110 with low-grade serous carcinoma, 207 with mucinous carcinoma, 484 with endometrioid carcinoma, and 390 with clear-cell carcinoma. PR expression was associated with improved disease-specific survival in endometrioid carcinoma (log-rank p<0·0001) and high-grade serous carcinoma (log-rank p=0·0006), and ER expression was associated with improved disease-specific survival in endometrioid carcinoma (log-rank p<0·0001). We recorded no significant associations for mucinous, clear-cell, or low-grade serous carcinoma. Positive hormone-receptor expression (weak or strong staining for PR or ER, or both) was associated with significantly improved disease-specific survival in endometrioid carcinoma compared with negative hormone-receptor expression, independent of study site, age, stage, and grade (hazard ratio 0·33, 95% CI 0·21-0·51; p<0·0001). Strong PR expression was independently associated with improved disease-specific survival in high-grade serous carcinoma (0·71, 0·55-0·91; p=0·0080), but weak PR expression was not (1·02, 0·89-1·18; p=0·74). INTERPRETATION PR and ER are prognostic biomarkers for endometrioid and high-grade serous ovarian cancers. Clinical trials, stratified by subtype and biomarker status, are needed to establish whether hormone-receptor status predicts response to endocrine treatment, and whether it could guide personalised treatment for ovarian cancer. FUNDING Carraresi Foundation and others.


BMC Cancer | 2007

High resolution melting for mutation scanning of TP53 exons 5–8

Michael Krypuy; Ahmed Ashour Ahmed; Dariush Etemadmoghadam; Sarah J Hyland; Anna deFazio; Stephen B. Fox; James D. Brenton; David Bowtell; Alexander Dobrovic

Backgroundp53 is commonly inactivated by mutations in the DNA-binding domain in a wide range of cancers. As mutant p53 often influences response to therapy, effective and rapid methods to scan for mutations in TP53 are likely to be of clinical value. We therefore evaluated the use of high resolution melting (HRM) as a rapid mutation scanning tool for TP53 in tumour samples.MethodsWe designed PCR amplicons for HRM mutation scanning of TP53 exons 5 to 8 and tested them with DNA from cell lines hemizygous or homozygous for known mutations. We assessed the sensitivity of each PCR amplicon using dilutions of cell line DNA in normal wild-type DNA. We then performed a blinded assessment on ovarian tumour DNA samples that had been previously sequenced for mutations in TP53 to assess the sensitivity and positive predictive value of the HRM technique. We also performed HRM analysis on breast tumour DNA samples with unknown TP53 mutation status.ResultsOne cell line mutation was not readily observed when exon 5 was amplified. As exon 5 contained multiple melting domains, we divided the exon into two amplicons for further screening. Sequence changes were also introduced into some of the primers to improve the melting characteristics of the amplicon. Aberrant HRM curves indicative of TP53 mutations were observed for each of the samples in the ovarian tumour DNA panel. Comparison of the HRM results with the sequencing results revealed that each mutation was detected by HRM in the correct exon. For the breast tumour panel, we detected seven aberrant melt profiles by HRM and subsequent sequencing confirmed the presence of these and no other mutations in the predicted exons.ConclusionHRM is an effective technique for simple and rapid scanning of TP53 mutations that can markedly reduce the amount of sequencing required in mutational studies of TP53.


International Journal of Cancer | 2000

Expression of c-erbB receptors, heregulin and oestrogen receptor in human breast cell lines.

Anna deFazio; Yoke-Eng Chiew; Rebecca L. Sini; Peter W. Janes; Robert L. Sutherland

Members of the c‐erbB family have been implicated in poor prognosis in breast cancer. Given the propensity for heterodimerisation within the erbB family, the pattern of co‐expression of these receptors is likely to be as functionally important as aberrant expression of any given receptor alone. Therefore, the patterns of expression of the receptors, epidermal growth factor receptor (EGF‐R), c‐erbB‐2, c‐erbB‐3, c‐erbB‐4, and one of the erbB ligands, heregulin (HRG), were examined in normal and malignant breast cell lines and compared with expression of oestrogen receptor (ER), a classical indicator of good prognosis. There was an inverse correlation between ER and EGF‐R mRNA levels, as previously described, but no correlation between either of these receptors and c‐erbB‐2. c‐erbB‐3 expression was positively correlated with ER. In contrast, HRG expression was inversely related to ER. Expression of antisense‐ER resulted in increased EGF‐R mRNA, demonstrating a functional link between the expression of these 2 genes, however, there was no significant change in c‐erbB‐2 or c‐erbB‐3 mRNA, suggesting that ER is not directly involved in control of expression of these genes. A comparison of individual erbB receptors and HRG revealed that the majority of lines expressing increased levels of c‐erbB‐2 also expressed elevated levels of c‐erbB‐3 mRNA, and none of the cell lines that expressed both c‐erbB‐2 and either c‐erbB‐3 or c‐erbB‐4 expressed the ligand HRG. In summary, the levels of expression of c‐erbB‐1, ‐2, ‐3, and ‐4 varied in this series of breast cell lines, and the pattern of expression and the relationship of each growth factor receptor to the expression of ER was quite distinct. The lack of expression of HRG in cell lines that express receptors may be indicative of paracrine interactions between erbB ligands and their cognate receptors and may suggest that the ligand and receptors are expressed in different subtypes of breast epithelial cells from which the cell lines are derived. Int. J. Cancer 87:487–498, 2000.

Collaboration


Dive into the Anna deFazio's collaboration.

Top Co-Authors

Avatar

David Bowtell

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Penelope M. Webb

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Sian Fereday

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Georgia Chenevix-Trench

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Michael Friedlander

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Sharon E. Johnatty

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Gao

University of Sydney

View shared research outputs
Researchain Logo
Decentralizing Knowledge