Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Di Gregorio is active.

Publication


Featured researches published by Anna Di Gregorio.


Development Genes and Evolution | 2003

A genomewide survey of developmentally relevant genes in Ciona intestinalis. II. Genes for homeobox transcription factors.

Shuichi Wada; Miki Tokuoka; Eiichi Shoguchi; Kenji Kobayashi; Anna Di Gregorio; Antonietta Spagnuolo; Margherita Branno; Yuji Kohara; Daniel S. Rokhsar; Michael S. Levine; Hidetoshi Saiga; Nori Satoh; Yutaka Satou

Homeobox-containing genes play crucial roles in various developmental processes, including body-plan specification, pattern formation and cell-type specification. The present study searched the draft genome sequence and cDNA/EST database of the basal chordate Ciona intestinalis to identify 83 homeobox-containing genes in this animal. This number of homeobox genes in the Ciona genome is smaller than that in the Caenorhabditis elegans, Drosophila melanogaster, human and mouse genomes. Of the 83 genes, 76 have possible human orthologues and 7 may be unique to Ciona. The ascidian homeobox genes were classified into 11 classes, including Hox class, NK class, Paired class, POU class, LIM class, TALE class, SIX class, Prox class, Cut class, ZFH class and HNF1 class, according to the classification scheme devised for known homeobox genes. As to the Hox cluster, the Ciona genome contains single copies of each of the paralogous groups, suggesting that there is a single Hox cluster, if any, but genes orthologous to Hox7, 8, 9 and 11 were not found in the genome. In addition, loss of genes had occurred independently in the Ciona lineage and was noticed in Gbx of the EHGbox subclass, Sax, NK3, Vax and vent of the NK class, Cart, Og9, Anf and Mix of the Paired class, POU-I, III, V and VI of the POU class, Lhx6/7 of the LIM class, TGIF of the TALE class, Cux and SATB of the Cut class, and ZFH1 of the ZFH class, which might have reduced the number of Ciona homeobox genes. Interestingly, one of the newly identified Ciona intestinalis genes and its vertebrate counterparts constitute a novel subclass of HNF1 class homeobox genes. Furthermore, evidence for the gene structures and expression of 54 of the 83 homeobox genes was provided by analysis of ESTs, suggesting that cDNAs for these 54 genes are available. The present data thus reveal the repertoire of homeodomain-containing transcription factors in the Ciona genome, which will be useful for future research on the development and evolution of chordates.


Developmental Dynamics | 2005

Ciona intestinalis: Chordate development made simple

Yale J. Passamaneck; Anna Di Gregorio

Thanks to their transparent and rapidly developing mosaic embryos, ascidians (or sea squirts) have been a model system for embryological studies for over a century. Recently, ascidians have entered the postgenomic era, with the sequencing of the Ciona intestinalis genome and the accumulation of molecular resources that rival those available for fruit flies and mice. One strength of ascidians as a model system is their close similarity to vertebrates. Literature reporting molecular homologies between vertebrate and ascidian tissues has flourished over the past 15 years, since the first ascidian genes were cloned. However, it should not be forgotten that ascidians diverged from the lineage leading to vertebrates over 500 million years ago. Here, we review the main similarities and differences so far identified, at the molecular level, between ascidian and vertebrate tissues and discuss the evolution of the compact ascidian genome. Developmental Dynamics 233:1–19, 2005.


Gene | 1995

Cloning of ascidian homeobox genes provides evidence for a primordial chordate cluster

Anna Di Gregorio; Antonietta Spagnuolo; Filomena Ristoratore; Michele Pischetola; Francesco Aniello; Margherita Branno; Lucio Cariello; Roberto Di Lauro

In order to isolate genes important in controlling embryonic development in Tunicates, a genomic library from the ascidian Ciona intestinalis was screened with a degenerate oligodeoxyribonucleotide encoding the third helix of Antennapedia-type homeoboxes. Fourteen C. intestinalis homeobox genes, corresponding to several classes of homeodomains, have been identified. Five of the isolated homeoboxes show their highest homology to members of the Vertebrate HOX clusters. mRNAs for two of the isolated homeoboxes are present in unfertilized C. intestinalis eggs.


Current Opinion in Genetics & Development | 1998

Ascidian embryogenesis and the origins of the chordate body plan

Anna Di Gregorio; Michael A. Levine

For more than a century, ascidians have been a widely used system for classic embryological studies. Ascidians possess simple, well-defined cell-lineages, compact genomes, rapid development and world-wide distribution. Transgenic DNA can be introduced into developing embryos using simple electroporation methods. The ascidian larva represents the most simplified chordate body plan and provides a useful model for studying the molecular pathways underlying the morphogenesis and differentiation of the notochord and neural tube.


Gene | 2003

Unusual number and genomic organization of Hox genes in the tunicate Ciona intestinalis.

Antonietta Spagnuolo; Filomena Ristoratore; Anna Di Gregorio; Francesco Aniello; Margherita Branno; Roberto Di Lauro

Hox genes are organized in genomic clusters. In all organisms where their role has been studied, Hox genes determine developmental fate along the antero-posterior axis. Hence, these genes represent an ideal system for the understanding of relationships between the number and expression of genes and body organization. We report in this paper that the ascidian Ciona intestinalis genome appears to contain a single Hox gene complex which shows absence of some of the members found in all chordates investigated up to now. Furthermore, the complex appears to be either unusually long or split in different subunits. We speculate that such an arrangement of Hox genes does not correspond to the chordate primordial cluster but occurred independently in the ascidian lineage.


Mechanisms of Development | 2000

Identification and developmental expression of three Distal-less homeobox containing genes in the ascidian Ciona intestinalis

Anna Caracciolo; Anna Di Gregorio; Francesco Aniello; Roberto Di Lauro; Margherita Branno

Several homeobox-containing genes related to Drosophila Distal-less (Dll) have been isolated from a wide variety of organisms and have been shown to function as developmental regulators. While in Drosophila only one Dll gene has been described so far, in Vertebrates many components of the Dlx multigenic family have been characterized. This suggests that, during the evolution of the Chordate phylum, the Dlx genes arose from an ancestral Dll/Dlx gene via gene duplication. We have previously reported the isolation of two Dll-related homeoboxes from the protochordate Ciona intestinalis, and described their clustered arrangement (Gene 156 (1995) 253). Here we present the detailed genomic organization and spatial-temporal expression of these two genes, Ci-Dll-A and Ci-Dll-B, and describe the isolation and characterization of another member of the ascidian family of Dll-related genes, which we tentatively named Ci-Dll-C.


BioMed Research International | 2013

From Notochord Formation to Hereditary Chordoma: The Many Roles of Brachyury

Yutaka Nibu; Diana S. José-Edwards; Anna Di Gregorio

Chordoma is a rare, but often malignant, bone cancer that preferentially affects the axial skeleton and the skull base. These tumors are both sporadic and hereditary and appear to occur more frequently after the fourth decade of life; however, modern technologies have increased the detection of pediatric chordomas. Chordomas originate from remnants of the notochord, the main embryonic axial structure that precedes the backbone, and share with notochord cells both histological features and the expression of characteristic genes. One such gene is Brachyury, which encodes for a sequence-specific transcription factor. Known for decades as a main regulator of notochord formation, Brachyury has recently gained interest as a biomarker and causative agent of chordoma, and therefore as a promising therapeutic target. Here, we review the main characteristics of chordoma, the molecular markers, and the clinical approaches currently available for the early detection and possible treatment of this cancer. In particular, we report on the current knowledge of the role of Brachyury and of its possible mechanisms of action in both notochord formation and chordoma etiogenesis.


Mechanisms of Development | 1999

Identification and developmental expression of Ci-msxb: a novel homologue of Drosophila msh gene in Ciona intestinalis.

Francesco Aniello; Annamaria Locascio; Maria Grazia Villani; Anna Di Gregorio; Laura Fucci; Margherita Branno

We report the cloning and expression pattern of Ci-msxb the second Ciona intestinalis homeobox gene homologue to the Drosophila muscle segment homeobox (msh) gene. Northern blot analysis showed that transcripts appeared at gastrula stage, peaked in the early tailbud and decreased during the tailed stages. Whole mount in situ hybridization showed that the Ci-msxb expression first is detected at 110 cell-stage in the blastomeres that are precursors of different tissue (muscle, spinal cord, endodermal strand, brain, mesenchyme, pigmented cells and primordial pharynx). Transcript level declined in mesoderm cells after the completion of gastrulation, but mRNAs were still present in the folding neural plate during neurulation and in the pigmented cells. Later, at larval stage, transcripts were present around the otolith and ocellus, in a restricted part of the nervous system and in the primordial pharynx; the gene expression was conserved after metamorphosis in the juvenile.


Nucleic Acids Research | 2016

ANISEED 2015: a digital framework for the comparative developmental biology of ascidians

Matija Brozovic; Cyril Martin; Christelle Dantec; Delphine Dauga; Mickaël Mendez; Paul Simion; Madeline Percher; Baptiste Laporte; Celine Scornavacca; Anna Di Gregorio; Shigeki Fujiwara; Mathieu Gineste; Elijah K. Lowe; Jacques Piette; Claudia Racioppi; Filomena Ristoratore; Yasunori Sasakura; Naohito Takatori; C. Titus Brown; Frédéric Delsuc; Emmanuel J. P. Douzery; Carmela Gissi; Alex McDougall; Hiroki Nishida; Hitoshi Sawada; Billie J. Swalla; Hitoyoshi Yasuo; Patrick Lemaire

Ascidians belong to the tunicates, the sister group of vertebrates and are recognized model organisms in the field of embryonic development, regeneration and stem cells. ANISEED is the main information system in the field of ascidian developmental biology. This article reports the development of the system since its initial publication in 2010. Over the past five years, we refactored the system from an initial custom schema to an extended version of the Chado schema and redesigned all user and back end interfaces. This new architecture was used to improve and enrich the description of Ciona intestinalis embryonic development, based on an improved genome assembly and gene model set, refined functional gene annotation, and anatomical ontologies, and a new collection of full ORF cDNAs. The genomes of nine ascidian species have been sequenced since the release of the C. intestinalis genome. In ANISEED 2015, all nine new ascidian species can be explored via dedicated genome browsers, and searched by Blast. In addition, ANISEED provides full functional gene annotation, anatomical ontologies and some gene expression data for the six species with highest quality genomes. ANISEED is publicly available at: http://www.aniseed.cnrs.fr.


Developmental Biology | 2008

Pbx1/Pbx2 govern axial skeletal development by controlling Polycomb and Hox in mesoderm and Pax1/Pax9 in sclerotome

Terence D. Capellini; Rediet Zewdu; Giuseppina Di Giacomo; Stefania Asciutti; Jamie E. Kugler; Anna Di Gregorio; Licia Selleri

The post-cranial axial skeleton consists of a metameric series of vertebral bodies and intervertebral discs, as well as adjoining ribs and sternum. Patterning of individual vertebrae and distinct regions of the vertebral column is accomplished by Polycomb and Hox proteins in the paraxial mesoderm, while their subsequent morphogenesis depends partially on Pax1/Pax9 in the sclerotome. In this study, we uncover that Pbx1/Pbx2 are co-expressed during successive stages of vertebral and rib development. Next, by exploiting a Pbx1/Pbx2 loss-of-function mouse, we show that decreasing Pbx2 dosage in the absence of Pbx1 affects axial development more severely than single loss of Pbx1. Pbx1/Pbx2 mutants exhibit a homogeneous vertebral column, with loss of vertebral identity, rudimentary ribs, and rostral hindlimb shifts. Of note, these axial defects do not arise from perturbed notochord function, as cellular proliferation, apoptosis, and expression of regulators of notochord signaling are normal in Pbx1/Pbx2 mutants. While the observed defects are consistent with loss of Pbx activity as a Hox-cofactor in the mesoderm, we additionally establish that axial skeletal patterning and hindlimb positioning are governed by Pbx1/Pbx2 through their genetic control of Polycomb and Hox expression and spatial distribution in the mesoderm, as well as of Pax1/Pax9 in the sclerotome.

Collaboration


Dive into the Anna Di Gregorio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Margherita Branno

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Michael A. Levine

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Francesco Aniello

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Filomena Ristoratore

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Roberto Di Lauro

Stazione Zoologica Anton Dohrn

View shared research outputs
Researchain Logo
Decentralizing Knowledge