Anna Duzynska
Warsaw University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anna Duzynska.
ACS Applied Materials & Interfaces | 2014
Andrzej Taube; J. Judek; Cezariusz Jastrzebski; Anna Duzynska; Krzysztof Świtkowski; Mariusz Zdrojek
We report Raman spectra measurements on a MoS(2) monolayer supported on SiO(2) as a function of temperature. Unlike in previous studies, the positions of the two main Raman modes, E(2g)(1) and A(1g) exhibited nonlinear temperature dependence. Temperature dependence of phonon shifts and widths is explained by optical phonon decay process into two acoustic phonons. On the basis of Raman measurements, local temperature change under laser heating power at different global temperatures is derived. Obtained results contribute to our understanding of the thermal properties of two-dimensional atomic crystals and can help to solve the problem of heat dissipation, which is crucial for use in the next generation of nanoelectronic devices.
Scientific Reports | 2015
J. Judek; Arkadiusz Gertych; Michał Świniarski; Anna Łapińska; Anna Duzynska; Mariusz Zdrojek
We present a novel approach for the simultaneous determination of the thermal conductivity κ and the total interface conductance g of supported 2D materials by the enhanced opto-thermal method. We harness the property of the Gaussian laser beam that acts as a heat source, whose size can easily and precisely be controlled. The experimental data for multi-layer graphene and MoS2 flakes are supplemented using numerical simulations of the heat distribution in the Si/SiO2/2D material system. The procedure of κ and g extraction is tested in a statistical approach, demonstrating the high accuracy and repeatability of our method.
Applied Physics Letters | 2015
Anna Duzynska; Andrzej Taube; K.P. Korona; J. Judek; Mariusz Zdrojek
We herein report the determination of the intrinsic thermal conductivity (κ) and interfacial thermal conductance (g) of single-walled carbon nanotube thin films (50 nm) on top of a SiO2 substrate. The study was performed as a function of temperature (300–450 K) using the opto-thermal technique. The value of κ decreases nonlinearly by approximately 60% from a value of 26 Wm−1 K−1 at 300 K to a value of 9 Wm−1 K−1 at 450 K. This effect stems from the increase of multi-phonon scattering at higher temperatures. The g increases with temperature, reaching a saturation plateau at 410 K. These findings may contribute to a better understanding of the thermal properties of the supported carbon nanotube thin films, which are crucial for any heat dissipation applications.
Applied Physics Letters | 2014
Anna Duzynska; J. Judek; Mariusz Zdrojek
We report the temperature-dependent Raman spectra for high-density single-walled carbon nanotube thin films. We show that the position of the main Raman mode (G) softens as the temperature increases and is nonlinear in the range of 70–270 K. This effect is explained by optical phonon decay. In the linear regime, the first-order temperature coefficient (χT) equals −0.02 cm−1/K, which is lower than for any other carbon nanotubes. Importantly, we found that local laser-induced temperature change shows a nonlinear trend as a function of global temperature with a minimum at 270 K. Our results contribute to understand the thermal properties of carbon nanotube thin films that could be applied, for example, in photovoltaic or thermoelectric devices.
Nano Letters | 2015
Ewa Zbydniewska; Anna Duzynska; Michka Popoff; Djamila Hourlier; Stéphane Lenfant; J. Judek; Mariusz Zdrojek; T. Mélin
We demonstrate the relation between the optical blinking of colloidal semiconductor nanocrystals (NCs) and their electrical charge blinking for which we provide the first experimental observation of power-law statistics. To show this, we harness the performance of CdSe/ZnS NCs coupled with carbon nanotube field-effect transistors (CNTFETs), which act as single charge-sensitive electrometers with submillisecond time resolution, at room temperature. A random telegraph signal (RTS) associated with the NC single-trap charging is observed and exhibits power-law temporal statistics (τ(-α), with α in the range of ∼1-3), and a Lorentzian current noise power spectrum with a well-defined 1/f(2) corner. The spectroscopic analysis of the NC-CNTFET devices is consistent with the charging of NC defect states with a charging energy of Ec ≥ 200 meV. These results pave the way for a deeper understanding of the physics and technology of nanocrystal-based optoelectronic devices.
Scientific Reports | 2017
Grzegorz Sobon; Anna Duzynska; Michał Świniarski; J. Judek; Jaroslaw Sotor; Mariusz Zdrojek
In this work, we demonstrate a comprehensive study on the nonlinear parameters of carbon nanotube (CNT) saturable absorbers (SA) as a function of the nanotube film thickness. We have fabricated a set of four saturable absorbers with different CNT thickness, ranging from 50 to 200 nm. The CNTs were fabricated via a vacuum filtration technique and deposited on fiber connector end facets. Each SA was characterized in terms of nonlinear transmittance (i.e. optical modulation depth) and tested in a Thulium-doped fiber laser. We show, that increasing the thickness of the CNT layer significantly increases the modulation depth (up to 17.3% with 200 nm thick layer), which strongly influences the central wavelength of the laser, but moderately affects the pulse duration. It means, that choosing the SA with defined CNT thickness might be an efficient method for wavelength-tuning of the laser, without degrading the pulse duration. In our setup, the best performance in terms of bandwidth and pulse duration (8.5 nm and 501 fs, respectively) were obtained with 100 nm thick CNT layer. This is also, to our knowledge, the first demonstration of a fully polarization-maintaining mode-locked Tm-doped laser based on CNT saturable absorber.
Journal of Physics: Condensed Matter | 2017
Anna Wróblewska; Anna Duzynska; J. Judek; Leszek Stobinski; K Żerańska; A P Gertych; Mariusz Zdrojek
We propose a method for monitoring the large-scale homogeneity of the reduction process of graphene oxide. For this purpose, a Raman mapping technique is employed to probe the evolution of the phonon properties of two different graphene oxide (GO) thin films upon controllable thermal reduction. The reduction of GO is reflected by the upshift of the statistical distribution of the relative intensity ratio of the G and D peaks (I D/I G) of the Raman spectra and is consistent with the ratio obtained for chemically reduced GO. In addition, the shifts of the position distributions of the main Raman modes ([Formula: see text], [Formula: see text]) and their cross-correlation with the I D/I G ratio provides evidence of a change of the doping level, demonstrating the influence of reduction processes on GO films.
Photonics Letters of Poland | 2015
Piotr Lesiak; Piotr Sobotka; Marcin Bieda; Anna Duzynska; Anna Wróblewska; Miłosz Chychłowski; Tomasz R. Wolinski
The paper presents the way that colour can serve solving the problem of calibration points indexing in a camera geometrical calibration process. We propose a technique in which indexes of calibration points in a black-and-white chessboard are represented as sets of colour regions in the neighbourhood of calibration points. We provide some general rules for designing a colour calibration chessboard and provide a method of calibration image analysis. We show that this approach leads to obtaining better results than in the case of widely used methods employing information about already indexed points to compute indexes. We also report constraints concerning the technique. Nowadays we are witnessing an increasing need for camera geometrical calibration systems. They are vital for such applications as 3D modelling, 3D reconstruction, assembly control systems, etc. Wherever possible, calibration objects placed in the scene are used in a camera geometrical calibration process. This approach significantly increases accuracy of calibration results and makes the calibration data extraction process easier and universal. There are many geometrical camera calibration techniques for a known calibration scene [1]. A great number of them use as an input calibration points which are localised and indexed in the scene. In this paper we propose the technique of calibration points indexing which uses a colour chessboard. The presented technique was developed by solving problems we encountered during experiments with our earlier methods of camera calibration scene analysis [2]-[3]. In particular, the proposed technique increases the number of indexed points points in case of local lack of calibration points detection. At the beginning of the paper we present a way of designing a chessboard pattern. Then we describe a calibration point indexing method, and finally we show experimental results. A black-and-white chessboard is widely used in order to obtain sub-pixel accuracy of calibration points localisation [1]. Calibration points are defined as corners of chessboard squares. Assuming the availability of rough localisation of these points, the points can be indexed. Noting that differences in distances between neighbouring points in calibration scene images differ slightly, one of the local searching methods can be employed (e.g. [2]). Methods of this type search for a calibration point to be indexed, using a window of a certain size. The position of the window is determined by a vector representing the distance between two previously indexed points in the same row or column. However, experiments show that this approach has its disadvantages, as described below. * E-mail: [email protected] Firstly, there is a danger of omitting some points during indexing in case of local lack of calibration points detection in a neighbourhood (e.g. caused by the presence of non-homogeneous light in the calibration scene). A particularly unfavourable situation is when the local lack of detection effects in the appearance of separated regions of detected calibration points. It is worth saying that such situations are likely to happen for calibration points situated near image borders. Such points are very important for the analysis of optical nonlinearities, and a lack of them can significantly influence the accuracy of distortion modelling. Secondly, such methods may give wrong results in the case of optical distortion with strong nonlinearities when getting information about the neighbouring index is not an easy task. Beside this, the methods are very sensitive to a single false localisation of a calibration point. Such a single false localisation can even result in false indexing of a big set of calibration points. To avoid the above-mentioned problems, we propose using a black-and-white chessboard which contains the coded index of a calibration point in the form of colour squares situated in the nearest neighbourhood of each point. The index of a certain calibration point is determined by colours of four nearest neighbouring squares (Fig.1). An order of squares in such foursome is important. Because the size of a colour square is determined only by the possibility of correct colour detection, the size of a colour square can be smaller than the size of a black or white square. The larger size of a black or white square is determined by the requirements of the exact localisation step which follows the indexing of calibration points [3]. In this step, edge information is extracted from a blackand-white chessboard. This edge information needs larger Artur Nowakowski, Wladyslaw Skarbek Institute of Radioelectronics, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warszawa, [email protected] Received February 10, 2009; accepted March 27, 2009; published March 31, 2009 http://www.photonics.pl/PLP
Scientific Reports | 2018
K. Zeranska-Chudek; A. Lapinska; Anna Wróblewska; J. Judek; Anna Duzynska; M. Pawłowski; A. M. Witowski; Mariusz Zdrojek
In this work, we have prepared a series of polydimethylsiloxane (PDMS) composites containing various graphene flakes loadings (0.02–2 wt%), and their broadband optical properties are being investigated. We demonstrate the tunability and evolution of transmittance and reflection spectra of the composites in a wide spectral range (0.4–200 μm) as a function of graphene content. Using these data we derive the broadband wavelength-dependent absorption coefficient (α) values. Our results show that α is roughly constant in the visible and IR ranges, and, surprisingly, is approximately one order of magnitude lower in the terahertz regime, suggesting different terahertz radiation scattering mechanism in our composite. Our material could be useful for applications in optical communication, sensing or ultrafast photonics.
Carbon | 2016
Anna Duzynska; Michal Swiniarski; Anna Wróblewska; Anna Lapinska; Klaudia Zeranska; J. Judek; Mariusz Zdrojek