Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna E. Czapar is active.

Publication


Featured researches published by Anna E. Czapar.


ACS Nano | 2016

Tobacco Mosaic Virus Delivery of Phenanthriplatin for Cancer therapy

Anna E. Czapar; Yao Rong Zheng; Imogen A. Riddell; Sourabh Shukla; Samuel G. Awuah; Stephen J. Lippard; Nicole F. Steinmetz

Phenanthriplatin, cis-[Pt(NH3)2Cl(phenanthridine)](NO3), is a cationic monofunctional DNA-binding platinum(II) anticancer drug candidate with unusual potency and cellular response profiles. Its in vivo efficacy has not yet been demonstrated, highlighting the need for a delivery system. Here we report tobacco mosaic virus (TMV) as a delivery system for phenanthriplatin. TMV forms hollow nanotubes with a polyanionic interior surface; capitalizing on this native structure, we developed a one-step phenanthriplatin loading protocol. Phenanthriplatin release from the carrier is induced in acidic environments. This delivery system, designated PhenPt-TMV, exhibits matched efficacy in a cancer cell panel compared to free phenanthriplatin. In vivo tumor delivery and efficacy were confirmed by using a mouse model of triple negative breast cancer. Tumors treated with PhenPt-TMV were 4× smaller than tumors treated with free phenanthriplatin or cisplatin, owing to increased accumulation of phenanthriplatin within the tumor tissue. The biology-derived TMV delivery system may facilitate translation of phenanthriplatin into the clinic.


Bioconjugate Chemistry | 2015

Interface of Physics and Biology: Engineering Virus-Based Nanoparticles for Biophotonics

Amy M. Wen; Melissa Infusino; Antonio De Luca; Daniel L. Kernan; Anna E. Czapar; Giuseppe Strangi; Nicole F. Steinmetz

Virus-based nanoparticles (VNPs) have been used for a wide range of applications, spanning basic materials science and translational medicine. Their propensity to self-assemble into precise structures that offer a three-dimensional scaffold for functionalization has led to their use as optical contrast agents and related biophotonics applications. A number of fluorescently labeled platforms have been developed and their utility in optical imaging demonstrated, yet their optical properties have not been investigated in detail. In this study, two VNPs of varying architectures were compared side-by-side to determine the impact of dye density, dye localization, conjugation chemistry, and microenvironment on the optical properties of the probes. Dyes were attached to icosahedral cowpea mosaic virus (CPMV) and rod-shaped tobacco mosaic virus (TMV) through a range of chemistries to target particular side chains displayed at specific locations around the virus. The fluorescence intensity and lifetime of the particles were determined, first using photochemical experiments on the benchtop, and second in imaging experiments using tissue culture experiments. The virus-based optical probes were found to be extraordinarily robust under ultrashort, pulsed laser light conditions with a significant amount of excitation energy, maintaining structural and chemical stability. The most effective fluorescence output was achieved through dye placement at optimized densities coupled to the exterior surface avoiding conjugated ring systems. Lifetime measurements indicate that fluorescence output depends not only on spacing the fluorophores, but also on dimer stacking and configurational changes leading to radiationless relaxation—and these processes are related to the conjugation chemistry and nanoparticle shape. For biological applications, the particles were also examined in tissue culture, from which it was found that the optical properties differed from those found on the benchtop due to effects from cellular processes and uptake kinetics. Data indicate that fluorescent cargos are released in the endolysosomal compartment of the cell targeted by the virus-based optical probes. These studies provide insight into the optical properties and fates of fluorescent proteinaceous imaging probes. The cellular release of cargo has implications not only for virus-based optical probes, but also for drug delivery and release systems.


Journal of Controlled Release | 2016

Tobacco mosaic virus-based protein nanoparticles and nanorods for chemotherapy delivery targeting breast cancer.

Michael A. Bruckman; Anna E. Czapar; Allen VanMeter; Lauren N. Randolph; Nicole F. Steinmetz

Drug delivery systems are required for drug targeting to avoid adverse effects associated with chemotherapy treatment regimes. Our approach is focused on the study and development of plant virus-based materials as drug delivery systems; specifically, this work focuses on the tobacco mosaic virus (TMV). Native TMV forms a hollow, high aspect-ratio nanotube measuring 300×18nm with a 4nm-wide central channel. Heat-transformation can be applied to TMV yielding spherical nanoparticles (SNPs) measuring ~50nm in size. While bioconjugate chemistries have been established to modify the TMV rod, such methods have not yet been described for the SNP platform. In this work, we probed the reactivity of SNPs toward bioconjugate reactions targeting lysine, glutamine/aspartic acid, and cysteine residues. We demonstrate functionalization of SNPs using these chemistries yielding efficient payload conjugation. In addition to covalent labeling techniques, we developed encapsulation techniques, where the cargo is loaded into the SNP during heat-transition from rod-to-sphere. Finally, we developed TMV and SNP formulations loaded with the chemotherapeutic doxorubicin, and we demonstrate the application of TMV rods and spheres for chemotherapy delivery targeting breast cancer.


Current Opinion in Chemical Biology | 2017

Plant viruses and bacteriophages for drug delivery in medicine and biotechnology

Anna E. Czapar; Nicole F. Steinmetz

There are a wide variety of synthetic and naturally occurring nanomaterials under development for nanoscale cargo-delivery applications. Viruses play a special role in these developments, because they can be regarded as naturally occurring nanomaterials evolved to package and deliver cargos. While any nanomaterial has its advantage and disadvantages, viral nanoparticles (VNPs), in particular the ones derived from plant viruses and bacteriophages, are attractive options for cargo-delivery as they are biocompatible, biodegradable, and non-infectious to mammals. Their protein-based structures are often understood at atomic resolution and are amenable to modification with atomic-level precision through chemical and genetic engineering. Here we present a focused review of the emerging technology development of plant viruses and bacteriophages targeting human health and agricultural applications. Key target areas of development are their use in chemotherapy, photodynamic therapy, pesticide-delivery, gene therapy, vaccine carriers, and immunotherapy.


European Polymer Journal | 2017

POxylation as an alternative stealth coating for biomedical applications

Herdis Bludau; Anna E. Czapar; Andrzej S. Pitek; Sourabh Shukla; Nicole F. Steinmetz

Polyethylene glycol (PEG) polymers are currently used in a variety of medical formulations to reduce toxicity, minimize immune interactions and improve pharmacokinetics. Despite its widespread use however, the presence of anti-PEG antibodies indicates that this polymer has the potential to be immunogenic and antigenic. Here we present an alternative polymer, poly(2-oxazoline) (POx) for stealth applications, specifically shielding of a proteinaceous nanoparticle from recognition by the immune system. Tobacco mosaic virus (TMV) was used as our testbed due to its potential for use as a nanocarrier for drug delivery and molecular imaging applications.


Biomacromolecules | 2017

Optical and Magnetic Resonance Imaging Using Fluorous Colloidal Nanoparticles.

Jaqueline D. Wallat; Anna E. Czapar; Charlie Wang; Amy M. Wen; Kristen S. Wek; Xin Yu; Nicole F. Steinmetz; Jonathan K. Pokorski

Improved imaging of cancerous tissue has the potential to aid prognosis and improve patient outcome through longitudinal imaging of treatment response and disease progression. While nuclear imaging has made headway in cancer imaging, fluorinated tracers that enable magnetic resonance imaging (19F MRI) hold promise, particularly for repeated imaging sessions because nonionizing radiation is used. Fluorine MRI detects molecular signatures by imaging a fluorinated tracer and takes advantage of the spatial and anatomical resolution afforded by MRI. This manuscript describes a fluorous polymeric nanoparticle that is capable of 19F MR imaging and fluorescent tracking for in vitro and in vivo monitoring of immune cells and cancerous tissue. The fluorous particle is derived from low-molecular-weight amphiphilic copolymers that self-assemble into micelles with a hydrodynamic diameter of 260 nm. The polymer is MR-active at concentrations as low as 2.1 mM in phantom imaging studies. The fluorinated particle demonstrated rapid uptake into immune cells for potential cell-tracking or delineation of the tumor microenvironment and showed negligible toxicity. Systemic administration indicates significant uptake into two tumor types, triple-negative breast cancer and ovarian cancer, with little accumulation in off-target tissue. These results indicate a robust platform imaging agent capable of immune cell tracking and systemic disease monitoring with exceptional uptake of the nanoparticle in multiple cancer models.


Journal of the American Chemical Society | 2018

Speciation of Phenanthriplatin and Its Analogs in the Core of Tobacco Mosaic Virus

Amit A. Vernekar; Gilles Berger; Anna E. Czapar; Frank A. Veliz; David I. Wang; Nicole F. Steinmetz; Stephen J. Lippard

Efficient loading of drugs in novel delivery agents has the potential to substantially improve therapy by targeting the diseased tissue while avoiding unwanted side effects. Here we report the first systematic study of the loading mechanism of phenanthriplatin and its analogs into tobacco mosaic virus (TMV), previously used by our group as an efficient carrier for anticancer drug delivery. A detailed investigation of the preferential uptake of phenanthriplatin in its aquated form (∼2000 molecules per TMV particle versus ∼1000 for the chlorido form) is provided. Whereas the net charge of phenanthriplatin analogs and their ionic mobilities have no effect on loading, the reactivity of aqua phenanthriplatin with the glutamates, lining the interior walls of the channel of TMV, has a pronounced effect on its loading. MALDI-MS analysis along with NMR spectroscopic studies of a model reaction of hydroxy-phenanthriplatin with acetate establish the formation of stable covalent adducts. The increased number of heteroaromatic rings on the platinum ligand appears to enhance loading, possibly by stabilizing hydrophobic stacking interactions with TMV core components, specifically Pro102 and Thr103 residues neighboring Glu97 and Glu106 in the channel. Electron transfer dissociation MS/MS fragmentation, a technique that can prevent mass-condition-vulnerable modification of proteins, reveals that Glu97 preferentially participates over Glu106 in covalent bond formation to the platinum center.


Molecular Pharmaceutics | 2017

Tobacco Mosaic Virus-Delivered Cisplatin Restores Efficacy in Platinum-Resistant Ovarian Cancer Cells

Christina E. Franke; Anna E. Czapar; Ravi Patel; Nicole F. Steinmetz

Platinum resistance in ovarian cancer is the major determinant of disease prognosis. Resistance can first appear at the onset of disease or develop in response to platinum-based chemotherapy. Due to poor response to alternate chemotherapies and lack of targeted therapies, there is an urgent clinical need for a new avenue toward treatment of platinum-resistant (PR) ovarian cancer. Nanoscale delivery systems hold potential to overcome resistance mechanisms. In this work, we present tobacco mosaic virus (TMV) as a nanocarrier for cisplatin for treatment of PR ovarian cancer cells. The TMV-cisplatin conjugate (TMV-cisPt) was synthesized using a charge-driven reaction that, like a classic click reaction, is simple and reliable for large-scale production. Up to ∼1900 cisPt were loaded per TMV-cisPt with biphasic release profiles characterized by a fast half-life ( t1) of ∼1 h and slow half-life ( t2) of ∼12 h independent of pH. Efficient cell uptake of TMV was observed when incubated with ovarian cancer cells, and TMV-cisPt demonstrated superior cytotoxicity and DNA double strand breakage (DSB) in platinum-sensitive (PS) and PR cancer cells when compared to free cisplatin. The cytotoxicity in PR ovarian cancer cells and overall lower effective dosage requirement makes TMV-cisPt a powerful candidate for improved ovarian cancer treatment strategies.


Advanced Science | 2018

Slow-Release Formulation of Cowpea Mosaic Virus for In Situ Vaccine Delivery to Treat Ovarian Cancer

Anna E. Czapar; Brylee David B. Tiu; Frank A. Veliz; Jonathan K. Pokorski; Nicole F. Steinmetz

Abstract The plant viral nanoparticle cowpea mosaic virus (CPMV) is shown to be an effective immunotherapy for ovarian cancer when administered as in situ vaccine weekly, directly into the intraperitoneal (IP) space in mice with disseminated tumors. While the antitumor efficacy is promising, the required frequency of administration may pose challenges for clinical implementation. To overcome this, a slow release formulation is developed. CPMV and polyamidoamine generation 4 dendrimer form aggregates (CPMV‐G4) based on electrostatic interactions and as a function of salt concentration, allowing for tailoring of aggregate size and release of CPMV. The antitumor efficacy of a single administration of CPMV‐G4 is compared to weekly administration of soluble CPMV in a mouse model of peritoneal ovarian cancer and found to be as effective at reducing disease burden as more frequent administrations of soluble CPMV; a single injection of soluble CPMV, does not significantly slow cancer development. The ability of CPMV‐G4 to control tumor growth following a single injection is likely due to the continued presence of CPMV in the IP space leading to prolonged immune stimulation. This enhanced retention of CPMV and its antitumor efficacy demonstrates the potential for viral–dendrimer hybrids to be used for delayed release applications.


Archive | 2018

Drug-Loaded Plant-Virus Based Nanoparticles for Cancer Drug Delivery

Michael A. Bruckman; Anna E. Czapar; Nicole F. Steinmetz

Nature has designed nanosized particles, specifically viruses, equipped to deliver cargo to cells. We report the chemical bioconjugation and shape shifting of a hollow, rod-shaped tobacco mosaic virus (TMV) to dense spherical nanoparticles (SNPs). We describe methods to transform TMV rods to spheres, load TMV rods and spheres with the chemotherapeutic drug, doxorubicin (DOX), to deliver modified particles to breast cancer cells, and to determine the IC50 values of the plant virus-based drug delivery system.

Collaboration


Dive into the Anna E. Czapar's collaboration.

Top Co-Authors

Avatar

Nicole F. Steinmetz

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Sourabh Shukla

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Amy M. Wen

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Andrzej S. Pitek

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Frank A. Veliz

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Jonathan K. Pokorski

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Michael A. Bruckman

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Ravi Patel

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Stephen J. Lippard

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Alan D. Levine

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge