Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna E. Grzegorzewicz is active.

Publication


Featured researches published by Anna E. Grzegorzewicz.


Nature Chemical Biology | 2012

Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane

Anna E. Grzegorzewicz; Ha Pham; Vijay A. K. B. Gundi; Michael S. Scherman; Elton J. North; Tamara Hess; Victoria Jones; Veronica Gruppo; Sarah E. M. Born; Jana Korduláková; Sivagami Sundaram Chavadi; Christophe Morisseau; Anne J. Lenaerts; Richard E. Lee; Michael R. McNeil; Mary Jackson

New chemotherapeutics active against multidrug-resistant Mycobacterium tuberculosis (M. tb) are urgently needed. We report on the identification of an adamantyl urea compound displaying potent bactericidal activity against M. tb and a unique mode of action, namely the abolition of the translocation of mycolic acids from the cytoplasm where they are synthesized to the periplasmic side of the plasma membrane where they are transferred onto cell wall arabinogalactan or used in the formation of virulence-associated outer membrane trehalose-containing glycolipids. Whole genome sequencing of spontaneous resistant mutants of M. tb selected in vitro followed by genetic validation experiments revealed that our prototype inhibitor targets the inner membrane transporter, MmpL3. Conditional gene expression of mmpL3 in mycobacteria and analysis of inhibitor-treated cells validate MmpL3 as essential for mycobacterial growth and support the involvement of this transporter in the translocation of trehalose monomycolate across the plasma membrane.


Antimicrobial Agents and Chemotherapy | 2014

Novel Insights into the Mechanism of Inhibition of MmpL3, a Target of Multiple Pharmacophores in Mycobacterium tuberculosis

Wei Li; Ashutosh Upadhyay; Fabio L. Fontes; E. Jeffrey North; Yuehong Wang; Debbie C. Crans; Anna E. Grzegorzewicz; Victoria Jones; Scott G. Franzblau; Richard E. Lee; Dean C. Crick; Mary Jackson

ABSTRACT MmpL3, a resistance-nodulation-division (RND) superfamily transporter, has been implicated in the formation of the outer membrane of Mycobacterium tuberculosis; specifically, MmpL3 is required for the export of mycolic acids in the form of trehalose monomycolates (TMM) to the periplasmic space or outer membrane of M. tuberculosis. Recently, seven series of inhibitors identified by whole-cell screening against M. tuberculosis, including the antituberculosis drug candidate SQ109, were shown to abolish MmpL3-mediated TMM export. However, this mode of action was brought into question by the broad-spectrum activities of some of these inhibitors against a variety of bacterial and fungal pathogens that do not synthesize mycolic acids. This observation, coupled with the ability of three of these classes of inhibitors to kill nonreplicating M. tuberculosis bacilli, led us to investigate alternative mechanisms of action. Our results indicate that the inhibitory effects of adamantyl ureas, indolecarboxamides, tetrahydropyrazolopyrimidines, and the 1,5-diarylpyrrole BM212 on the transport activity of MmpL3 in actively replicating M. tuberculosis bacilli are, like that of SQ109, most likely due to their ability to dissipate the transmembrane electrochemical proton gradient. In addition to providing novel insights into the modes of action of compounds reported to inhibit MmpL3, our results provide the first explanation for the large number of pharmacophores that apparently target this essential inner membrane transporter.


Bioorganic & Medicinal Chemistry | 2010

Identification of triazinoindol-benzimidazolones as nanomolar inhibitors of the Mycobacterium tuberculosis enzyme TDP-6-deoxy-D-xylo-4-hexopyranosid-4-ulose 3,5-epimerase (RmlC)

Sharmila Sivendran; Victoria Jones; Dianqing Sun; Yi Wang; Anna E. Grzegorzewicz; Michael S. Scherman; Andrew D. Napper; J. Andrew McCammon; Richard E. Lee; Scott L. Diamond; Michael R. McNeil

High-throughput screening of 201,368 compounds revealed that 1-(3-(5-ethyl-5H-[1,2,4]triazino[5,6-b]indol-3-ylthio)propyl)-1H-benzo[d]imidazol-2(3H)-one (SID 7975595) inhibited RmlC a TB cell wall biosynthetic enzyme. SID 7975595 acts as a competitive inhibitor of the enzymes substrate and inhibits RmlC as a fast-on rate, fully reversible inhibitor. An analog of SID 7975595 had a K(i) of 62nM. Computer modeling showed that the binding of the tethered two-ringed system into the active site occurred at the thymidine binding region for one ring system and the sugar region for the other ring system.


Nature Communications | 2013

Mechanism of inhibition of Mycobacterium tuberculosis antigen 85 by ebselen

Lorenza Favrot; Anna E. Grzegorzewicz; Daniel H. Lajiness; Rachel K. Marvin; Julie Boucau; Dragan Isailovic; Mary Jackson; Donald R. Ronning

The increasing prevalence of drug-resistant tuberculosis highlights the need for identifying new antitubercular drugs that can treat these infections. The antigen 85 (Ag85) complex has emerged as an intriguing mycobacterial drug target due to its central role in synthesizing major components of the inner and outer leaflets of the mycobacterial outer membrane. Here we identify ebselen as a potent inhibitor of the Mycobacterium tuberculosis Ag85 complex. Mass spectrometry data show that ebselen binds covalently to a cysteine residue (C209) located near the Ag85C active site. The crystal structure of Ag85C in the presence of ebselen shows that C209 modification restructures the active site, thereby disrupting the hydrogen-bonded network within the active site that is essential for enzymatic activity. C209 mutations display marked decreases in enzymatic activity. These data suggest that compounds using this mechanism of action will strongly inhibit the Ag85 complex and minimize the selection of drug resistance.


Bioorganic & Medicinal Chemistry | 2011

The structure-activity relationship of urea derivatives as anti-tuberculosis agents

Joshua R. Brown; Elton J. North; Julian G. Hurdle; Christophe Morisseau; Jerrod S. Scarborough; Dianqing Sun; Jana Korduláková; Michael S. Scherman; Victoria Jones; Anna E. Grzegorzewicz; Rebecca Crew; Mary Jackson; Michael R. McNeil; Richard E. Lee

The treatment of tuberculosis is becoming more difficult due to the ever increasing prevalence of drug resistance. Thus, it is imperative that novel anti-tuberculosis agents, with unique mechanisms of action, be discovered and developed. The direct anti-tubercular testing of a small compound library led to discovery of adamantyl urea hit compound 1. In this study, the hit was followed up through the synthesis of an optimization library. This library was generated by systematically replacing each section of the molecule with a similar moiety until a clear structure-activity relationship was obtained with respect to anti-tubercular activity. The best compounds in this series contained a 1-adamantyl-3-phenyl urea core and had potent activity against Mycobacterium tuberculosis plus an acceptable therapeutic index. It was noted that the compounds identified and the pharmacophore developed is consistent with inhibitors of epoxide hydrolase family of enzymes. Consequently, the compounds were tested for inhibition of representative epoxide hydrolases: M. tuberculosis EphB and EphE; and human soluble epoxide hydrolase. Many of the optimized inhibitors showed both potent EphB and EphE inhibition suggesting the antitubercular activity is through inhibition of multiple epoxide hydrolase enzymes. The inhibitors also showed potent inhibition of humans soluble epoxide hydrolase, but limited cytotoxicity suggesting that future studies must be towards increasing the selectivity of epoxide hydrolase inhibition towards the M. tuberculosis enzymes.


Journal of Biological Chemistry | 2012

A common mechanism of inhibition of the Mycobacterium tuberculosis mycolic acid biosynthetic pathway by isoxyl and thiacetazone

Anna E. Grzegorzewicz; Jana Korduláková; Victoria Jones; Sarah E. M. Born; Juan M. Belardinelli; Adrien Vaquié; Vijay A. K. B. Gundi; Jan Madacki; Nawel Slama; Françoise Laval; Julien Vaubourgeix; Rebecca Crew; Brigitte Gicquel; Mamadou Daffé; Héctor R. Morbidoni; Patrick J. Brennan; Annaïk Quémard; Michael R. McNeil; Mary Jackson

Background: The anti-TB prodrugs isoxyl (ISO) and thiacetazone (TAC) inhibit mycolic acid biosynthesis. Results: We show that ISO and TAC both target the dehydration step of the FAS-II elongation system. Conclusion: ISO and TAC share the same mode of action. Significance: ISO and TAC are the first antibiotics reported to target the FAS-II dehydratase(s) of Mycobacterium tuberculosis. Isoxyl (ISO) and thiacetazone (TAC), two prodrugs once used in the clinical treatment of tuberculosis, have long been thought to abolish Mycobacterium tuberculosis (M. tuberculosis) growth through the inhibition of mycolic acid biosynthesis, but their respective targets in this pathway have remained elusive. Here we show that treating M. tuberculosis with ISO or TAC results in both cases in the accumulation of 3-hydroxy C18, C20, and C22 fatty acids, suggestive of an inhibition of the dehydratase step of the fatty-acid synthase type II elongation cycle. Consistently, overexpression of the essential hadABC genes encoding the (3R)-hydroxyacyl-acyl carrier protein dehydratases resulted in more than a 16- and 80-fold increase in the resistance of M. tuberculosis to ISO and TAC, respectively. A missense mutation in the hadA gene of spontaneous ISO- and TAC-resistant mutants was sufficient to confer upon M. tuberculosis high level resistance to both drugs. Other mutations found in hypersusceptible or resistant M. tuberculosis and Mycobacterium kansasii isolates mapped to hadC. Mutations affecting the non-essential mycolic acid methyltransferases MmaA4 and MmaA2 were also found in M. tuberculosis spontaneous ISO- and TAC-resistant mutants. That MmaA4, at least, participates in the activation of the two prodrugs as proposed earlier is not supported by our biochemical evidence. Instead and in light of the known interactions of both MmaA4 and MmaA2 with HadAB and HadBC, we propose that mutations affecting these enzymes may impact the binding of ISO and TAC to the dehydratases.


Bioorganic & Medicinal Chemistry | 2012

Screening a library of 1600 adamantyl ureas for anti-Mycobacterium tuberculosis activity in vitro and for better physical chemical properties for bioavailability

Michael S. Scherman; Elton J. North; Victoria Jones; Tamara Hess; Anna E. Grzegorzewicz; Takeo Kasagami; In Hae Kim; Oleg Merzlikin; Anne J. Lenaerts; Richard E. Lee; Mary Jackson; Christophe Morisseau; Michael R. McNeil

Adamantyl ureas were previously identified as a group of compounds active against Mycobacterium tuberculosis in culture with minimum inhibitor concentrations (MICs) below 0.1 μg/ml. These compounds have been shown to target MmpL3, a protein involved in secretion of trehalose mono-mycolate. They also inhibit both human soluble epoxide hydrolase (hsEH) and M. tuberculosis epoxide hydrolases. However, active compounds to date have high cLogPs and are poorly soluble, leading to low bioavailability and thus limiting any therapeutic application. In this study, a library of 1600 ureas (mostly adamantyl ureas), which were synthesized for the purpose of increasing the bioavailability of inhibitors of hsEH, was screened for activity against M. tuberculosis. 1-Adamantyl-3-phenyl ureas with a polar para substituent were found to retain moderate activity against M. tuberculosis and one of these compounds was shown to be present in serum after oral administration to mice. However, neither it, nor a closely related analog, reduced M. tuberculosis infection in mice. No correlation between in vitro potency against M. tuberculosis and the hsEH inhibition were found supporting the concept that activity against hsEH and M. tuberculosis can be separated. Also there was a lack of correlation with cLogP and inhibition of the growth of M. tuberculosis. Finally, members of two classes of adamantyl ureas that contained polar components to increase their bioavailability, but lacked efficacy against growing M. tuberculosis, were found to taken up by the bacterium as effectively as a highly active apolar urea suggesting that these modifications to increase bioavailability affected the interaction of the urea against its target rather than making them unable to enter the bacterium.


Bioorganic & Medicinal Chemistry | 2013

Design, synthesis and anti-tuberculosis activity of 1-adamantyl-3-heteroaryl ureas with improved in vitro pharmacokinetic properties.

E. Jeffrey North; Michael S. Scherman; David F. Bruhn; Jerrod S. Scarborough; Marcus M. Maddox; Victoria Jones; Anna E. Grzegorzewicz; Lei Yang; Tamara Hess; Christophe Morisseau; Mary Jackson; Michael R. McNeil; Richard E. Lee

Out of the prominent global ailments, tuberculosis (TB) is still one of the leading causes of death worldwide due to infectious disease. Development of new drugs that shorten the current tuberculosis treatment time and have activity against drug resistant strains is of utmost importance. Towards these goals we have focused our efforts on developing novel anti-TB compounds with the general structure of 1-adamantyl-3-phenyl urea. This series is active against Mycobacteria and previous lead compounds were found to inhibit the membrane transporter MmpL3, the protein responsible for mycolic acid transport across the plasma membrane. However, these compounds suffered from poor in vitro pharmacokinetic (PK) profiles and they have a similar structure/SAR to inhibitors of human soluble epoxide hydrolase (sEH) enzymes. Therefore, in this study the further optimization of this compound class was driven by three factors: (1) to increase selectivity for anti-TB activity over human sEH activity, (2) to optimize PK profiles including solubility and (3) to maintain target inhibition. A new series of 1-adamantyl-3-heteroaryl ureas was designed and synthesized replacing the phenyl substituent of the original series with pyridines, pyrimidines, triazines, oxazoles, isoxazoles, oxadiazoles and pyrazoles. This study produced lead isoxazole, oxadiazole and pyrazole substituted adamantyl ureas with improved in vitro PK profiles, increased selectivity and good anti-TB potencies with sub μg/mL minimum inhibitory concentrations.


ACS Infectious Diseases | 2015

Covalent modification of the Mycobacterium tuberculosis FAS-II dehydratase by Isoxyl and Thiacetazone.

Anna E. Grzegorzewicz; Nathalie Eynard; Annaïk Quémard; E. Jeffrey North; Alyssa Margolis; Jared J. Lindenberger; Victoria Jones; Jana Korduláková; Patrick J. Brennan; Richard E. Lee; Donald R. Ronning; Michael R. McNeil; Mary Jackson

Isoxyl (ISO) and thiacetazone (TAC) are two antitubercular prodrugs formerly used in the clinical treatment of tuberculosis. Although both prodrugs have recently been shown to kill Mycobacterium tuberculosis through the inhibition of the dehydration step of the type II fatty acid synthase pathway, their detailed mechanism of inhibition, the precise number of enzymes involved in their activation, and the nature of their activated forms remained unknown. This paper demonstrates that both ISO and TAC specifically and covalently react with a cysteine residue (Cys61) of the HadA subunit of the dehydratase, thereby inhibiting HadAB activity. The results unveil for the first time the nature of the active forms of ISO and TAC and explain the basis for the structure–activity relationship of and resistance to these thiourea prodrugs. The results further indicate that the flavin-containing monooxygenase EthA is most likely the only enzyme required for the activation of ISO and TAC in mycobacteria.


Journal of Biological Chemistry | 2016

Assembling of the Mycobacterium tuberculosis Cell Wall Core

Anna E. Grzegorzewicz; Célia de Sousa-d'Auria; Michael R. McNeil; Emilie Huc-Claustre; Victoria Jones; Cécile Petit; Shiva K. Angala; Júlia Zemanová; Qinglan Wang; Juan Manuel Belardinelli; Qian Gao; Yoshimasa Ishizaki; Katarína Mikušová; Patrick J. Brennan; Donald R. Ronning; Mohamed Chami; Christine Houssin; Mary Jackson

The unique cell wall of mycobacteria is essential to their viability and the target of many clinically used anti-tuberculosis drugs and inhibitors under development. Despite intensive efforts to identify the ligase(s) responsible for the covalent attachment of the two major heteropolysaccharides of the mycobacterial cell wall, arabinogalactan (AG) and peptidoglycan (PG), the enzyme or enzymes responsible have remained elusive. We here report on the identification of the two enzymes of Mycobacterium tuberculosis, CpsA1 (Rv3267) and CpsA2 (Rv3484), responsible for this function. CpsA1 and CpsA2 belong to the widespread LytR-Cps2A-Psr (LCP) family of enzymes that has been shown to catalyze a variety of glycopolymer transfer reactions in Gram-positive bacteria, including the attachment of wall teichoic acids to PG. Although individual cpsA1 and cpsA2 knock-outs of M. tuberculosis were readily obtained, the combined inactivation of both genes appears to be lethal. In the closely related microorganism Corynebacterium glutamicum, the ortholog of cpsA1 is the only gene involved in this function, and its conditional knockdown leads to dramatic changes in the cell wall composition and morphology of the bacteria due to extensive shedding of cell wall material in the culture medium as a result of defective attachment of AG to PG. This work marks an important step in our understanding of the biogenesis of the unique cell envelope of mycobacteria and opens new opportunities for drug development.

Collaboration


Dive into the Anna E. Grzegorzewicz's collaboration.

Top Co-Authors

Avatar

Mary Jackson

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victoria Jones

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jana Korduláková

Comenius University in Bratislava

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dean C. Crick

Colorado State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge