Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Elmquist is active.

Publication


Featured researches published by Anna Elmquist.


Trends in Pharmacological Sciences | 2000

Cell penetrating peptides

Mattias Hällbrink; Margus Pooga; Madis Metsis; Priit Kogerman; Andreas Valkna; Anne Meikas; Maria Lindgren; Astrid Gräslund; Göran Eriksson; Claes Göran Östensson; Metka V. Budihna; Matjaz Zorko; Anna Elmquist; Ursel Soomets; Pontus Lundberg; Peter Järver; Külliki Saar; Samir El-Andaloussi; Kalle Kilk; Ülo Langel

The present invention relates to a method for predicting or designing, detecting, and/or verifying a novel cell-penetrating peptide (CPP) and to a method for using said new CPP and/or a novel usage of a known CPP for an improved cellular uptake of a cellular effector, coupled to said CPP. Furthermore, the present invention also relates to a method for predicting or designing, detecting and/or verifying a novel cell-penetrating peptide (CPP) that mimics cellular effector activity and/or inhibits cellular effector activity. The present invention additionally relates to the use of said CPP for treating and/or preventing a medical condition and to the use of said CPP for the manufacture of a pharmaceutical composition for treating a medical condition.


Biochimica et Biophysica Acta | 2000

Deletion analogues of transportan

Ursel Soomets; Maria Lindgren; Xavier Gallet; Mattias Hällbrink; Anna Elmquist; L. Balaspiri; Matjaz Zorko; Margus Pooga; Robert Brasseur; Ülo Langel

Several shorter analogues of the cell penetrating peptide, transportan, have been synthesized in order to define the regions of the sequence, which are responsible for the membrane translocation property of the peptide. Penetration of the peptides into Bowes melanoma cells and the influence on GTPase activity in Rin m5F cellular membranes have been tested. The experimental data on cell penetration have been compared with molecular modeling of insertion of peptides into biological membranes. Omission of six amino acids from the N-terminus did not significantly impair the cell penetration of the peptide while deletions at the C-terminus or in the middle of the transportan sequence decreased or abolished the cellular uptake. Most transportan analogues exert an inhibitory effect on GTPase activity. Molecular modeling shows that insertion of the transportan analogues into the membrane differs for different peptides. Probably the length of the peptide as well as the location of aromatic and positively charged residues have major impact on the orientation of peptides in the membranes and thereby influence the cellular penetration. In summary, we have designed and characterized several novel short transportan analogues with similar cellular translocation properties to the parent peptide, but with reduced undesired cellular activity.


The FASEB Journal | 2003

Cell entry and antimicrobial properties of eukaryotic cell-penetrating peptides

Natalia Nekhotiaeva; Anna Elmquist; Gunaratna Kuttuva Rajarao; Mattias Hällbrink; Ülo Langel; Liam Good

Antimicrobial drug action is limited by both microbial and host cell membranes. Microbes stringently exclude the entry of most drugs, and mammalian membranes limit drug distribution and access to intracellular pathogens. Recently, cell‐penetrating peptides (CPPs) have been developed as carriers to improve mammalian cell uptake. Given that CPPs are cationic and often amphipathic, similar to membrane active antimicrobial peptides, it may be possible to use CPP activity to improve drug delivery to microbes. Here, two CPPs, TP10 and pVEC, were found to enter a range of bacteria and fungi. The uptake route involves rapid surface accumulation within minutes followed by cell entry. TP10 inhibited Candida albicans and Staphylococcus aureus growth, and pVEC inhibited Mycobacterium smegmatis growth at low micromolar doses, below the levels that harmed human HeLa cells. Therefore, although TP10 and pVEC entered all cell types tested, they preferentially damage microbes, and this effect was sufficient to clear HeLa cell cultures from noninvasive S. aureus infection. Also, conversion of the cytotoxicity indicator dye SYTOX Green showed that TP10 causes rapid and lethal permeabilization of S. aureus and pVEC permeabilizes M. smegmatis, but not HeLa cells. Therefore, TP10 and pVEC can enter both mammalian and microbial cells and preferentially permeabilize and kill microbes.


Biological Chemistry | 2003

In vitro Uptake and Stability Study of pVEC and Its All-D Analog

Anna Elmquist; Ülo Langel

Abstract A key step in the development of new hydrophilic pharmaceuticals is to get them through biological barriers. Cell-penetrating peptides, CPPs, have been shown previously to enter cells both in vitro and in vivo by a non-endocytotic mechanism and to be able to carry large cargo molecules with them. Recently, we showed that a small peptide, pVEC, from murine vascular endothelial cadherin, has the characteristics to be classified as a protein derived CPP. Here we have further investigated pVEC together with its all-D analog for cellular uptake, intra- and extracellular stability, and their enzymatic degradation. The two peptides, pVEC and all-D pVEC, translocate into aortic endothelial cells and murine fibroblasts by a nonendocytotic mechanism. In phosphate buffer, pVEC remains intact while the C-terminal lysine is quickly removed in human serum and serumcontaining media. Both pVEC and pVEC without the Cterminal Lys were detected by mass spectrometry inside the two cell types tested. The pVEC half-life is 10.5 min in phosphate buffer containing 10 units of trypsin and 44.6 min in phosphate buffer containing 4.2 units of carboxypeptidase A and 18 units of carboxypeptidase B. In contrast to pVEC, the all-D analog remains intact in serum and resists enzymatic degradation.


Biochemical Journal | 2004

Passage of cell-penetrating peptides across a human epithelial cell layer in vitro

Maria Lindgren; Mattias Hällbrink; Anna Elmquist; Ülo Langel

Cell barriers are essential for the maintenance and regulation of the microenvironments of the human body. Cell-penetrating peptides have simplified the delivery of bioactive cargoes across the plasma membrane. Here, the passage of three cell-penetrating peptides (transportan, the transportan analogue transportan 10, and penetratin) across a Caco-2 human colon cancer cell layer in vitro was investigated. The peptides were internalized into epithelial Caco-2 cells as visualized by indirect fluorescence microscopy and quantified by fluorimetry. Studies of peptide outflow from cells showed that the peptides were in equilibrium across the plasma membrane. The ability of the peptides to cross a Caco-2 cell layer was tested in a two-chambered model system. After 120 min, 7.0%, 2.8% and 0.6% of added transportan, transportan 10 and penetratin respectively was detected in the lower chamber. Both transportan and transportan 10 reversibly decreased the trans-epithelial electrical resistance of the barrier model, with minimum values after 60 min of 46% and 60% of control respectively. Penetratin did not affect the resistance of the cell layer to the same extent. Although transportan markedly increased the passage of ions, the paracellular flux of 4.4 kDa fluorescein-labelled dextran was limited. In conclusion, the results indicate that the transportan peptides pass the epithelial cell layer mainly by a mechanism involving a transcellular pathway.


Neuromolecular Medicine | 2005

Galanin and its receptors in neurological disorders.

Linda Lundström; Anna Elmquist; Tamas Bartfai; Ülo Langel

Galanin is a highly inducible neuropeptide, showing distinct up-regulation after pathological disturbance within the nervous system. Significant increase in galanin expression is observed after peripheral nerve injury, in the basal forebrain in Alzheimer’s disease (AD), during neuronal development, and after stimulation with estrogen, while seizure activity deplete galanin in the hippocampus. A wide distribution of galanin and its receptors is seen in the nervous system, often in co-localization with classical neurotransmitters and other neuromodulators. Galanin acts predominantly as an inhibitory, hyperpolarizing neuromodulator on neurotransmitter and glucose-induced insulin release and stimulates growth hormone and prolactin secretion. Galanin has been implicated in several higher order physiological functions including cognition, feeding, nociception, mood regulation, and neuroendocrine modulation. The effects of galanin are mediated via three G protein-coupled receptors with different functional coupling. Moderate to low pharmacological effects are seen by galanin under physiological conditions, in contrast to its dramatic effects on the nervous system after neuronal disturbance. This pathophysiological heavy function of the galaninergic system renders it an interest for disorders such as AD, depression, and epilepsy in terms of side effects. Some properties of the galaninergic system are of particular importance in the context of neurodegeneration. Galanin is highly inducible, 10- to 100-fold, upon nerve injury, whereas most neuropeptides are induced 1.5- to 2-fold. Galanin is strongly neurotrophic during development as well as subsequent to injury. Whereas other neurotrophic neuropeptides like VIP and PACAP activate cAMP synthesis, galanin suppresses its synthesis, yet it is a strong neurotrophic as well as neuroprotective agent. As we delineate which galanin receptor subtype mediates neuroprotective and neurotrophic effects and which mediates synaptic inhibition, pharmacological use of receptor-selective galaninergic ligands for treatment in neurodegenerative diseases are coming closer.


International Journal of Peptide Research and Therapeutics | 2005

Prediction of Cell-Penetrating Peptides

Mattias Hällbrink; Kalle Kilk; Anna Elmquist; Pontus Lundberg; Maria Lindgren; Yang Jiang; Margus Pooga; Ursel Soomets; Ülo Langel

Cell-penetrating peptides, CPPs, are used as delivery vectors for pharmacologically interesting substances, such as antisense oligonucleotides, proteins and peptides. We present a general principle for designing cell-penetrating peptides derived from naturally occurring proteins as well as from randomly generated polyamino acid sequences. Thereby, we introduce a novel pharmacological principle for identification of cell-penetrating peptides for which the applications can be numerous, including cellular transduction vectors and mimics of intracellular protein–protein interactions. The methods of identifying a CPP comprises assessing the averaged bulk property values of the defined sequence, and ensuring that they fall within the bulk property value interval obtained from the training set. Despite this simplistic approach, the search criteria proved useful for finding CPP properties in either proteins or random sequences. We have experimentally verified cell-penetrating properties of 10–20-mer peptides derived from naturally occurring proteins as well as from random poly-amino acids. We note that since CPPs can be found in part of the protein sequences that may govern protein interactions, it is possible to produce cell-penetrating protein agonists or antagonists.


Neuropeptides | 2004

Targeting of antisense PNA oligomers to human galanin receptor type 1 mRNA.

Kalle Kilk; Anna Elmquist; Külliki Saar; Margus Pooga; Tiit Land; Tamas Bartfai; Ursel Soomets; Ülo Langel

In this work, we have targeted positions 18-38 of the human galanin receptor type 1 (GalR1) mRNA coding sequence with different peptide nucleic acid (PNA) oligomers. This region has previously been shown to be a good antisense region and therefore we aimed to identify the subregions and/or thermodynamic parameters determining the antisense efficacy. Nine different PNA oligomers were conjugated to a cell-penetrating peptide, transportan, to enhance their cellular uptake. Concentration-dependent down-regulation of GalR1 protein expression in human melanoma cell line Bowes was measured by radioligand binding assay. No reduction of GalR1 mRNA level was observed upon PNA treatment, thus, the effect was concluded to be translational arrest. Judging from the EC50 values, antisense PNA oligomers targeting regions 24-38 (EC50=70 nM) or 27-38 (EC50=80 nM) were the most potent suppressors of protein expression. No parameter predicted by M-fold algorithm was found to correlate with the measured antisense activities. Presence of some subregions was found not to increase antisense efficiency of PNA. Presence of a short unpaired triplet between nucleotides 33 and 35 in the target region was, on the other hand, found to be the most critical for efficient GalR1 down-regulation. Thus, the results are of high impact in designing antisense oligomers. Specific results of this study demonstrate 20-fold more efficient antisense down-regulation of GalR1 as achieved before.


Experimental Cell Research | 2001

VE-cadherin-derived cell-penetrating peptide, pVEC, with carrier functions.

Anna Elmquist; Maria Lindgren; Tamas Bartfai; Ülo Langel


Bioconjugate Chemistry | 2004

Protein cargo delivery properties of cell-penetrating peptides. A comparative study

Pille Säälik; Anna Elmquist; Mats Hansen; Kärt Padari; Külliki Saar; Kaido Viht; Ülo Langel; Margus Pooga

Collaboration


Dive into the Anna Elmquist's collaboration.

Top Co-Authors

Avatar

Ülo Langel

University Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matjaz Zorko

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar

Anne Meikas

National Institute of Chemical Physics and Biophysics

View shared research outputs
Top Co-Authors

Avatar

Priit Kogerman

National Institute of Chemical Physics and Biophysics

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge