Anna Färnert
Karolinska University Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anna Färnert.
PLOS Medicine | 2010
Philip Bejon; Thomas N. Williams; Anne Liljander; Abdisalan M. Noor; Juliana Wambua; Edna Ogada; Ally Olotu; Faith Osier; Simon I. Hay; Anna Färnert; Kevin Marsh
Philip Bejon and colleagues document the clustering of malaria episodes and malarial parasite infection. These patterns may enable future prediction of hotspots of malaria infection and targeting of treatment or preventive interventions.
Malaria Journal | 2009
Ulf Bronner; Paul Cs Divis; Anna Färnert; Balbir Singh
Plasmodium knowlesi is typically found in nature in macaques and has recently been recognized as the fifth species of Plasmodium causing malaria in human populations in south-east Asia. A case of knowlesi malaria is described in a Swedish man, who became ill after returning from a short visit to Malaysian Borneo in October 2006. His P. knowlesi infection was not detected using a rapid diagnostic test for malaria, but was confirmed by PCR and molecular characterization. He responded rapidly to treatment with mefloquine. Evaluation of rapid diagnostic kits with further samples from knowlesi malaria patients are necessary, since early identification and appropriate anti-malarial treatment of suspected cases are essential due to the rapid growth and potentially life-threatening nature of P. knowlesi. Physicians should be aware that knowlesi infection is an important differential diagnosis in febrile travellers, with a recent travel history to forested areas in south-east Asia, including short-term travellers who tested negative with rapid diagnostic tests.
Nature Communications | 2014
Weimin Liu; Yingying Li; Katharina S. Shaw; Gerald H. Learn; Lindsey J. Plenderleith; Jordan A. Malenke; Sesh A. Sundararaman; Miguel Ángel Ramírez; Patricia A. Crystal; Andrew G. Smith; Frederic Bibollet-Ruche; Ahidjo Ayouba; Sabrina Locatelli; Amandine Esteban; Fatima Mouacha; Emilande Guichet; Christelle Butel; Steve Ahuka-Mundeke; Bila Isia Inogwabini; Jean Bosco N Ndjango; Sheri Speede; Crickette Sanz; David Morgan; Mary Katherine Gonder; Philip J. Kranzusch; Peter D. Walsh; Alexander V. Georgiev; Martin N. Muller; Alex K. Piel; Fiona A. Stewart
Plasmodium vivax is the leading cause of human malaria in Asia and Latin America but is absent from most of central Africa due to the near fixation of a mutation that inhibits the expression of its receptor, the Duffy antigen, on human erythrocytes. The emergence of this protective allele is not understood because P. vivax is believed to have originated in Asia. Here we show, using a non-invasive approach, that wild chimpanzees and gorillas throughout central Africa are endemically infected with parasites that are closely related to human P. vivax. Sequence analyses reveal that ape parasites lack host specificity and are much more diverse than human parasites, which form a monophyletic lineage within the ape parasite radiation. These findings indicate that human P. vivax is of African origin and likely selected for the Duffy-negative mutation. All extant human P. vivax parasites are derived from a single ancestor that escaped out of Africa.
Current Biology | 2010
Kazuyuki Tanabe; Toshihiro Mita; Thibaut Jombart; Anders Eriksson; Shun Horibe; Nirianne Marie Q. Palacpac; Lisa C. Ranford-Cartwright; Hiromi Sawai; Naoko Sakihama; Hiroshi Ohmae; Masatoshi Nakamura; Marcelo U. Ferreira; Ananias A. Escalante; Franck Prugnolle; Anders Björkman; Anna Färnert; Akira Kaneko; Toshihiro Horii; Andrea Manica; Hirohisa Kishino; Francois Balloux
Plasmodium falciparum is distributed throughout the tropics and is responsible for an estimated 230 million cases of malaria every year, with a further 1.4 billion people at risk of infection. Little is known about the genetic makeup of P. falciparum populations, despite variation in genetic diversity being a key factor in morbidity, mortality, and the success of malaria control initiatives. Here we analyze a worldwide sample of 519 P. falciparum isolates sequenced for two housekeeping genes (63 single nucleotide polymorphisms from around 5000 nucleotides per isolate). We observe a strong negative correlation between within-population genetic diversity and geographic distance from sub-Saharan Africa (R(2) = 0.95) over Africa, Asia, and Oceania. In contrast, regional variation in transmission intensity seems to have had a negligible impact on the distribution of genetic diversity. The striking geographic patterns of isolation by distance observed in P. falciparum mirror the ones previously documented in humans and point to a joint sub-Saharan African origin between the parasite and its host. Age estimates for the expansion of P. falciparum further support that anatomically modern humans were infected prior to their exit out of Africa and carried the parasite along during their colonization of the world.
Malaria Journal | 2009
Ulf Bronner; Paul Cs Divis; Anna Färnert; Balbir Singh
Plasmodium knowlesi is typically found in nature in macaques and has recently been recognized as the fifth species of Plasmodium causing malaria in human populations in south-east Asia. A case of knowlesi malaria is described in a Swedish man, who became ill after returning from a short visit to Malaysian Borneo in October 2006. His P. knowlesi infection was not detected using a rapid diagnostic test for malaria, but was confirmed by PCR and molecular characterization. He responded rapidly to treatment with mefloquine. Evaluation of rapid diagnostic kits with further samples from knowlesi malaria patients are necessary, since early identification and appropriate anti-malarial treatment of suspected cases are essential due to the rapid growth and potentially life-threatening nature of P. knowlesi. Physicians should be aware that knowlesi infection is an important differential diagnosis in febrile travellers, with a recent travel history to forested areas in south-east Asia, including short-term travellers who tested negative with rapid diagnostic tests.
BMJ | 2003
Anna Färnert; Johan Lindberg; Pedro Gil; Göte Swedberg; Yngve Berqvist; Mita M. Thapar; Niklas Lindegardh; Sándor Berezcky; Anders Björkman
The increased spread of drug resistant malaria highlights the need for alternatives for treatment and chemoprophylaxis. The combination of atovaquone and proguanil hydrochloride (Malarone, GlaxoSmithKline, NC) has shown high efficacy against Plasmodium falciparum with only mild side effects and has been registered for use in several countries, including Denmark, Germany, Sweden, the United Kingdom, and the United States.1 Treatment failures have been attributed to suboptimal dosage, reinfections, or to a point mutation in the cytochrome b gene. 1 2 Bioavailability of atovaquone depends on the concomitant intake of a fatty diet, yet drug concentrations were not analysed in these reports. We provide evidence of resistance in two patients treated with atovaquone and proguanil hydrochloride for P falciparum infection. View this table: Details of three patients treated with atovaquone and proguanil hydrochloride (Malarone; GlaxoSmithKline) for Plasmodium …
Acta Tropica | 2002
Stephen Magesa; Ky Mdira; Hamza A. Babiker; Michael Alifrangis; Anna Färnert; Paul E. Simonsen; Ib C. Bygbjerg; David Walliker; Palle Jakobsen
The diversity of Plasmodium falciparum clones and their role in progression from asymptomatic to symptomatic condition in children have been investigated. Attempts to identify whether particular parasite genotypes were associated with the development of clinical symptoms have been made. A cohort of 34 initially asymptomatic parasitaemic children aged 1-5 years were followed daily for 31 days. Clinical examinations were made each day for signs and symptoms of clinical malaria, followed by parasitological investigation. Nineteen children developed symptoms suggestive of clinical malaria during this period. Daily blood parasite samples from 13 children who developed clinical malaria symptoms and 7 who remained asymptomatic were genotyped by PCR-amplification of the polymorphic regions of the merozoite surface proteins 1 and 2 (MSP1 and MSP2) and the glutamate rich protein (GLURP) genes. Infections were found to be highly complex in both groups of children. Every isolate examined from both groups had a mixture of parasite clones. Daily changes were observed in both parasite density and genotypic pattern. The mean number of genotypes per individual was estimated at 4.9 and 2.7 for asymptomatic and symptomatic groups of children, respectively. Analysis of allele frequency distributions showed that these differed significantly for the MSP1 locus only.
Malaria Journal | 2009
Anne Liljander; Lisa Wiklund; Nicole Falk; Margaret Kweku; Andreas Mårtensson; Ingrid Felger; Anna Färnert
BackgroundGenotyping of Plasmodium falciparum based on PCR amplification of the polymorphic genes encoding the merozoite surface proteins 1 and 2 (msp1 and msp2) is well established in the field of malaria research to determine the number and types of concurrent clones in an infection. Genotyping is regarded essential in anti-malarial drug trials to define treatment outcome, by distinguishing recrudescent parasites from new infections. Because of the limitations in specificity and resolution of gel electrophoresis used for fragment analysis in most genotyping assays it became necessary to improve the methodology. An alternative technique for fragment analysis is capillary electrophoresis (CE) performed using automated DNA sequencers. Here, one of the most widely-used protocols for genotyping of P. falciparum msp1 and msp2 has been adapted to the CE technique. The protocol and optimization process as well as the potentials and limitations of the technique in molecular epidemiology studies and anti-malarial drug trials are reported.MethodsThe original genotyping assay was adapted by fluorescent labeling of the msp1 and msp2 allelic type specific primers in the nested PCR and analysis of the final PCR products in a DNA sequencer. A substantial optimization of the fluorescent assay was performed. The CE method was validated using known mixtures of laboratory lines and field samples from Ghana and Tanzania, and compared to the original PCR assay with gel electrophoresis.ResultsThe CE-based method showed high precision and reproducibility in determining fragment size (< 1 bp). More genotypes were detected in mixtures of laboratory lines and blood samples from malaria infected children, compared to gel electrophoresis. The capacity to distinguish recrudescent parasites from new infections in an anti-malarial drug trial was similar by both methods, resulting in the same outcome classification, however with more precise determination by CE.ConclusionThe improved resolution and reproducibility of CE in fragment sizing allows for comparison of alleles between separate runs and determination of allele frequencies in a population. The more detailed characterization of individual msp1 and msp2 genotypes may contribute to improved assessments in anti-malarial drug trials and to a further understanding of the molecular epidemiology of these polymorphic P. falciparum antigens.
The Journal of Infectious Diseases | 2009
Sabina Dahlström; Pedro Eduardo Ferreira; M. Isabel Veiga; Nazli Sedighi; Lisa Wiklund; Andreas Mårtensson; Anna Färnert; Christin Sisowath; Lyda Osorio; Hamid Darban; Björn Andersson; Akira Kaneko; Gwenaëlle Conseil; Anders Björkman; J. Pedro Gil
Plasmodium falciparum response mechanisms to the major artemisinin-based combination therapies (ACTs) are largely unknown. Multidrug-resistance protein (MRP)-like adenosine triphosphate (ATP)-binding cassette transporters are known to be related to multidrug resistance in many organisms. Therefore, we hypothesized that sequence variation in pfmrp1 can contribute to decreased parasite sensitivity to ACT. Through sequencing of the pfmrp1 open reading frame for 103 geographically diverse P. falciparum infections, we identified 27 single-nucleotide polymorphisms (SNPs), of which 21 were nonsynonymous and 6 synonymous. Analyses of clinical efficacy trials with artesunate-amodiaquine and artemether-lumefantrine detected a specific selection of the globally prevalent I876V SNP in recurrent infections after artemether-lumefantrine treatment. Additional in silico studies suggested an influence of variation in amino acid 876 on the ATP hydrolysis cycle of pfMRP1 with potential impact on protein functionality. Our data suggest for the first time, to our knowledge, the involvement of pfMRP1 in P. falciparum in vivo response to ACT.
Antimicrobial Agents and Chemotherapy | 2010
Sofia Friberg Hietala; Andreas Mårtensson; Billy Ngasala; Sabina Dahlström; Niklas Lindegardh; Anna Annerberg; Zul Premji; Anna Färnert; Pedro Gil; Anders Björkman; Michael Ashton
ABSTRACT The combination of artemether (ARM) and lumefantrine is currently the first-line treatment of uncomplicated falciparum malaria in mainland Tanzania. While the exposure to lumefantrine has been associated with the probability of adequate clinical and parasitological cure, increasing exposure to artemether and the active metabolite dihydroartemisinin (DHA) has been shown to decrease the parasite clearance time. The aim of this analysis was to describe the pharmacokinetics and pharmacodynamics of artemether, dihydroartemisinin, and lumefantrine in African children with uncomplicated malaria. In addition to drug concentrations and parasitemias from 50 Tanzanian children with falciparum malaria, peripheral parasite densities from 11 asymptomatic children were included in the model of the parasite dynamics. The population pharmacokinetics and pharmacodynamics of artemether, dihydroartemisinin, and lumefantrine were modeled in NONMEM. The distribution of artemether was described by a two-compartment model with a rapid absorption and elimination through metabolism to dihydroartemisinin. Dihydroartemisinin concentrations were adequately illustrated by a one-compartment model. The pharmacokinetics of artemether was time dependent, with typical oral clearance increasing from 2.6 liters/h/kg on day 1 to 10 liters/h/kg on day 3. The pharmacokinetics of lumefantrine was sufficiently described by a one-compartment model with an absorption lag time. The typical value of oral clearance was estimated to 77 ml/h/kg. The proposed semimechanistic model of parasite dynamics, while a rough approximation of the complex interplay between malaria parasite and the human host, adequately described the early effect of ARM and DHA concentrations on the parasite density in malaria patients. However, the poor precision in some parameters illustrates the need for further data to support and refine this model.