Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Gambin is active.

Publication


Featured researches published by Anna Gambin.


BMC Bioinformatics | 2006

Applying dynamic Bayesian networks to perturbed gene expression data

Norbert Dojer; Anna Gambin; Andrzej Mizera; Bartek Wilczynski; Jerzy Tiuryn

BackgroundA central goal of molecular biology is to understand the regulatory mechanisms of gene transcription and protein synthesis. Because of their solid basis in statistics, allowing to deal with the stochastic aspects of gene expressions and noisy measurements in a natural way, Bayesian networks appear attractive in the field of inferring gene interactions structure from microarray experiments data. However, the basic formalism has some disadvantages, e.g. it is sometimes hard to distinguish between the origin and the target of an interaction. Two kinds of microarray experiments yield data particularly rich in information regarding the direction of interactions: time series and perturbation experiments. In order to correctly handle them, the basic formalism must be modified. For example, dynamic Bayesian networks (DBN) apply to time series microarray data. To our knowledge the DBN technique has not been applied in the context of perturbation experiments.ResultsWe extend the framework of dynamic Bayesian networks in order to incorporate perturbations. Moreover, an exact algorithm for inferring an optimal network is proposed and a discretization method specialized for time series data from perturbation experiments is introduced. We apply our procedure to realistic simulations data. The results are compared with those obtained by standard DBN learning techniques. Moreover, the advantages of using exact learning algorithm instead of heuristic methods are analyzed.ConclusionWe show that the quality of inferred networks dramatically improves when using data from perturbation experiments. We also conclude that the exact algorithm should be used when it is possible, i.e. when considered set of genes is small enough.


PLOS Genetics | 2012

Genomic Hypomethylation in the Human Germline Associates with Selective Structural Mutability in the Human Genome

Jian Jian Li; R. Alan Harris; Sau Wai Cheung; Cristian Coarfa; Mira Jeong; Margaret A. Goodell; Lisa D. White; Ankita Patel; Sung-Hae L. Kang; Chad A. Shaw; A. Craig Chinault; Tomasz Gambin; Anna Gambin; James R. Lupski; Aleksandar Milosavljevic

The hotspots of structural polymorphisms and structural mutability in the human genome remain to be explained mechanistically. We examine associations of structural mutability with germline DNA methylation and with non-allelic homologous recombination (NAHR) mediated by low-copy repeats (LCRs). Combined evidence from four human sperm methylome maps, human genome evolution, structural polymorphisms in the human population, and previous genomic and disease studies consistently points to a strong association of germline hypomethylation and genomic instability. Specifically, methylation deserts, the ∼1% fraction of the human genome with the lowest methylation in the germline, show a tenfold enrichment for structural rearrangements that occurred in the human genome since the branching of chimpanzee and are highly enriched for fast-evolving loci that regulate tissue-specific gene expression. Analysis of copy number variants (CNVs) from 400 human samples identified using a custom-designed array comparative genomic hybridization (aCGH) chip, combined with publicly available structural variation data, indicates that association of structural mutability with germline hypomethylation is comparable in magnitude to the association of structural mutability with LCR–mediated NAHR. Moreover, rare CNVs occurring in the genomes of individuals diagnosed with schizophrenia, bipolar disorder, and developmental delay and de novo CNVs occurring in those diagnosed with autism are significantly more concentrated within hypomethylated regions. These findings suggest a new connection between the epigenome, selective mutability, evolution, and human disease.


Nucleic Acids Research | 2015

Genome-wide analyses of LINE–LINE-mediated nonallelic homologous recombination

Michał Startek; Przemyslaw Szafranski; Tomasz Gambin; Ian M. Campbell; Patricia Hixson; Chad A. Shaw; Pawel Stankiewicz; Anna Gambin

Nonallelic homologous recombination (NAHR), occurring between low-copy repeats (LCRs) >10 kb in size and sharing >97% DNA sequence identity, is responsible for the majority of recurrent genomic rearrangements in the human genome. Recent studies have shown that transposable elements (TEs) can also mediate recurrent deletions and translocations, indicating the features of substrates that mediate NAHR may be significantly less stringent than previously believed. Using >4 kb length and >95% sequence identity criteria, we analyzed of the genome-wide distribution of long interspersed element (LINE) retrotransposon and their potential to mediate NAHR. We identified 17 005 directly oriented LINE pairs located <10 Mbp from each other as potential NAHR substrates, placing 82.8% of the human genome at risk of LINE–LINE-mediated instability. Cross-referencing these regions with CNVs in the Baylor College of Medicine clinical chromosomal microarray database of 36 285 patients, we identified 516 CNVs potentially mediated by LINEs. Using long-range PCR of five different genomic regions in a total of 44 patients, we confirmed that the CNV breakpoints in each patient map within the LINE elements. To additionally assess the scale of LINE–LINE/NAHR phenomenon in the human genome, we tested DNA samples from six healthy individuals on a custom aCGH microarray targeting LINE elements predicted to mediate CNVs and identified 25 LINE–LINE rearrangements. Our data indicate that LINE–LINE-mediated NAHR is widespread and under-recognized, and is an important mechanism of structural rearrangement contributing to human genomic variability.


Human Mutation | 2013

Recurrent HERV‐H‐Mediated 3q13.2–q13.31 Deletions Cause a Syndrome of Hypotonia and Motor, Language, and Cognitive Delays

Andrey Shuvarikov; Ian M. Campbell; Piotr Dittwald; Nicholas J. Neill; Martin G. Bialer; Christine Moore; Patricia G. Wheeler; Wallace Se; Mark C. Hannibal; Michael F. Murray; Monica A. Giovanni; Deborah Terespolsky; Sandi Sodhi; Matteo Cassina; David H. Viskochil; Billur Moghaddam; Kristin Herman; Chester W. Brown; Christine R. Beck; Anna Gambin; Sau Wai Cheung; Ankita Patel; Allen N. Lamb; Lisa G. Shaffer; Jay W. Ellison; J. Britt Ravnan; Pawel Stankiewicz; Jill A. Rosenfeld

We describe the molecular and clinical characterization of nine individuals with recurrent, 3.4‐Mb, de novo deletions of 3q13.2–q13.31 detected by chromosomal microarray analysis. All individuals have hypotonia and language and motor delays; they variably express mild to moderate cognitive delays (8/9), abnormal behavior (7/9), and autism spectrum disorders (3/9). Common facial features include downslanting palpebral fissures with epicanthal folds, a slightly bulbous nose, and relative macrocephaly. Twenty‐eight genes map to the deleted region, including four strong candidate genes, DRD3, ZBTB20, GAP43, and BOC, with important roles in neural and/or muscular development. Analysis of the breakpoint regions based on array data revealed directly oriented human endogenous retrovirus (HERV‐H) elements of ∼5 kb in size and of >95% DNA sequence identity flanking the deletion. Subsequent DNA sequencing revealed different deletion breakpoints and suggested nonallelic homologous recombination (NAHR) between HERV‐H elements as a mechanism of deletion formation, analogous to HERV‐I‐flanked and NAHR‐mediated AZFa deletions. We propose that similar HERV elements may also mediate other recurrent deletion and duplication events on a genome‐wide scale. Observation of rare recurrent chromosomal events such as these deletions helps to further the understanding of mechanisms behind naturally occurring variation in the human genome and its contribution to genetic disease.


European Journal of Human Genetics | 2013

Application of custom-designed oligonucleotide array CGH in 145 patients with autistic spectrum disorders

Barbara Wiśniowiecka-Kowalnik; Monika Kastory-Bronowska; Magdalena Bartnik; Katarzyna Derwińska; Wanda Dymczak-Domini; Dorota Szumbarska; Ewa Ziemka; Krzysztof Szczałuba; Maciej Sykulski; Tomasz Gambin; Anna Gambin; Chad A. Shaw; Tadeusz Mazurczak; Ewa Obersztyn; Ewa Bocian; Pawel Stankiewicz

Autism spectrum disorders (ASDs) are a heterogeneous group of neurodevelopmental disorders, including childhood autism, atypical autism, and Asperger syndrome, with an estimated prevalence of 1.0–2.5% in the general population. ASDs have a complex multifactorial etiology, with genetic causes being recognized in only 10–20% of cases. Recently, copy-number variants (CNVs) have been shown to contribute to over 10% of ASD cases. We have applied a custom-designed oligonucleotide array comparative genomic hybridization with an exonic coverage of over 1700 genes, including 221 genes known to cause autism and autism candidate genes, in a cohort of 145 patients with ASDs. The patients were classified according to ICD-10 standards and the Childhood Autism Rating Scale protocol into three groups consisting of 45 individuals with and 69 individuals without developmental delay/intellectual disability (DD/ID), and 31 patients, in whom DD/ID could not be excluded. In 12 patients, we have identified 16 copy-number changes, eight (5.5%) of which likely contribute to ASDs. In addition to known recurrent CNVs such as deletions 15q11.2 (BP1-BP2) and 3q13.31 (including DRD3 and ZBTB20), and duplications 15q13.3 and 16p13.11, our analysis revealed two novel genes clinically relevant for ASDs: ARHGAP24 (4q21.23q21.3) and SLC16A7 (12q14.1). Our results further confirm the diagnostic importance of array CGH in detection of CNVs in patients with ASDs and demonstrate that CNVs are an important cause of ASDs as a heterogeneous condition with a variety of contributory genes.


American Journal of Medical Genetics | 2012

Application of array comparative genomic hybridization in 102 patients with epilepsy and additional neurodevelopmental disorders

Magdalena Bartnik; Elżbieta Szczepanik; Katarzyna Derwińska; Barbara Wiśniowiecka-Kowalnik; Tomasz Gambin; Maciej Sykulski; Kamila Ziemkiewicz; Marta Kędzior; Monika Gos; Dorota Hoffman-Zacharska; Mazurczak T; Anetta Jeziorek; Dorota Antczak-Marach; Mariola Rudzka-Dybała; Hanna Mazurkiewicz; Alicja Goszczańska-Ciuchta; Zofia Zalewska-Miszkurka; Iwona Terczyńska; Małgorzata Sobierajewicz; Chad A. Shaw; Anna Gambin; Hanna Mierzewska; Tadeusz Mazurczak; Ewa Obersztyn; Ewa Bocian; Pawel Stankiewicz

Copy‐number variants (CNVs) collectively represent an important cause of neurodevelopmental disorders such as developmental delay (DD)/intellectual disability (ID), autism, and epilepsy. In contrast to DD/ID, for which the application of microarray techniques enables detection of pathogenic CNVs in ∼10–20% of patients, there are only few studies of the role of CNVs in epilepsy and genetic etiology in the vast majority of cases remains unknown. We have applied whole‐genome exon‐targeted oligonucleotide array comparative genomic hybridization (array CGH) to a cohort of 102 patients with various types of epilepsy with or without additional neurodevelopmental abnormalities. Chromosomal microarray analysis revealed 24 non‐polymorphic CNVs in 23 patients, among which 10 CNVs are known to be clinically relevant. Two rare deletions in 2q24.1q24.3, including KCNJ3 and 9q21.13 are novel pathogenic genetic loci and 12 CNVs are of unknown clinical significance. Our results further support the notion that rare CNVs can cause different types of epilepsy, emphasize the efficiency of detecting novel candidate genes by whole‐genome array CGH, and suggest that the clinical application of array CGH should be extended to patients with unexplained epilepsies.


BMC Bioinformatics | 2007

On consensus biomarker selection.

Janusz Dutkowski; Anna Gambin

BackgroundRecent development of mass spectrometry technology enabled the analysis of complex peptide mixtures. A lot of effort is currently devoted to the identification of biomarkers in human body fluids like serum or plasma, based on which new diagnostic tests for different diseases could be constructed. Various biomarker selection procedures have been exploited in recent studies. It has been noted that they often lead to different biomarker lists and as a consequence, the patient classification may also vary.ResultsHere we propose a new approach to the biomarker selection problem: to apply several competing feature ranking procedures and compute a consensus list of features based on their outcomes. We validate our methods on two proteomic datasets for the diagnosis of ovarian and prostate cancer.ConclusionThe proposed methodology can improve the classification results and at the same time provide a unified biomarker list for further biological examinations and interpretation.


Human Mutation | 2013

Inverted Low-Copy Repeats and Genome Instability—A Genome-Wide Analysis

Piotr Dittwald; Tomasz Gambin; Claudia Gonzaga-Jauregui; Claudia M.B. Carvalho; James R. Lupski; Pawel Stankiewicz; Anna Gambin

Inverse paralogous low‐copy repeats (IP‐LCRs) can cause genome instability by nonallelic homologous recombination (NAHR)‐mediated balanced inversions. When disrupting a dosage‐sensitive gene(s), balanced inversions can lead to abnormal phenotypes. We delineated the genome‐wide distribution of IP‐LCRs >1 kB in size with >95% sequence identity and mapped the genes, potentially intersected by an inversion, that overlap at least one of the IP‐LCRs. Remarkably, our results show that 12.0% of the human genome is potentially susceptible to such inversions and 942 genes, 99 of which are on the X chromosome, are predicted to be disrupted secondary to such an inversion! In addition, IP‐LCRs larger than 800 bp with at least 98% sequence identity (duplication/triplication facilitating IP‐LCRs, DTIP‐LCRs) were recently implicated in the formation of complex genomic rearrangements with a duplication‐inverted triplication–duplication (DUP‐TRP/INV‐DUP) structure by a replication‐based mechanism involving a template switch between such inverted repeats. We identified 1,551 DTIP‐LCRs that could facilitate DUP‐TRP/INV‐DUP formation. Remarkably, 1,445 disease‐associated genes are at risk of undergoing copy‐number gain as they map to genomic intervals susceptible to the formation of DUP‐TRP/INV‐DUP complex rearrangements. We implicate inverted LCRs as a human genome architectural feature that could potentially be responsible for genomic instability associated with many human disease traits.


BMC Biology | 2014

Human endogenous retroviral elements promote genome instability via non-allelic homologous recombination

Ian M. Campbell; Tomasz Gambin; Piotr Dittwald; Christine R. Beck; Andrey Shuvarikov; Patricia Hixson; Ankita Patel; Anna Gambin; Chad A. Shaw; Jill A. Rosenfeld; Pawel Stankiewicz

BackgroundRecurrent rearrangements of the human genome resulting in disease or variation are mainly mediated by non-allelic homologous recombination (NAHR) between low-copy repeats. However, other genomic structures, including AT-rich palindromes and retroviruses, have also been reported to underlie recurrent structural rearrangements. Notably, recurrent deletions of Yq12 conveying azoospermia, as well as non-pathogenic reciprocal duplications, are mediated by human endogenous retroviral elements (HERVs). We hypothesized that HERV elements throughout the genome can serve as substrates for genomic instability and result in human copy-number variation (CNV).ResultsWe developed parameters to identify HERV elements similar to those that mediate Yq12 rearrangements as well as recurrent deletions of 3q13.2q13.31. We used these parameters to identify HERV pairs genome-wide that may cause instability. Our analysis highlighted 170 pairs, flanking 12.1% of the genome. We cross-referenced these predicted susceptibility regions with CNVs from our clinical databases for potentially HERV-mediated rearrangements and identified 78 CNVs. We subsequently molecularly confirmed recurrent deletion and duplication rearrangements at four loci in ten individuals, including reciprocal rearrangements at two loci. Breakpoint sequencing revealed clustering in regions of high sequence identity enriched in PRDM9-mediated recombination hotspot motifs.ConclusionsThe presence of deletions and reciprocal duplications suggests NAHR as the causative mechanism of HERV-mediated CNV, even though the length and the sequence homology of the HERV elements are less than currently thought to be required for NAHR. We propose that in addition to HERVs, other repetitive elements, such as long interspersed elements, may also be responsible for the formation of recurrent CNVs via NAHR.


European Urology | 2016

Gene Expression Profile of the Clinically Aggressive Micropapillary Variant of Bladder Cancer.

Charles C. Guo; Vipulkumar Dadhania; Li Zhang; Tadeusz Majewski; Jolanta Bondaruk; Maciej Sykulski; Weronika Wronowska; Anna Gambin; Yan Wang; Shizhen Zhang; Enrique Fuentes-Mattei; Ashish M. Kamat; Colin P. Dinney; Arlene O. Siefker-Radtke; Woonyoung Choi; Keith A. Baggerly; David J. McConkey; John N. Weinstein; Bogdan Czerniak

BACKGROUND Progression of conventional urothelial carcinoma of the bladder to a tumor with unique microscopic features referred to as micropapillary carcinoma is coupled with aggressive clinical behavior signified by a high propensity for metastasis to regional lymph nodes and distant organs resulting in shorter survival. OBJECTIVE To analyze the expression profile of micropapillary cancer and define its molecular features relevant to clinical behavior. DESIGN, SETTING, AND PARTICIPANTS We retrospectively identified 43 patients with micropapillary bladder cancers and a reference set of 89 patients with conventional urothelial carcinomas and performed whole-genome expression messenger RNA profiling. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The tumors were segregated into distinct groups according to hierarchical clustering analyses. They were also classified according to luminal, p53-like, and basal categories using a previously described algorithm. We applied Ingenuity Pathway Analysis software (Qiagen, Redwood City, CA, USA) and gene set enrichment analysis for pathway analyses. Cox proportional hazards models and Kaplan-Meier methods were used to assess the relationship between survival and molecular subtypes. The expression profile of micropapillary cancer was validated for selected markers by immunohistochemistry on parallel tissue microarrays. RESULTS AND LIMITATIONS We show that the striking features of micropapillary cancer are downregulation of miR-296 and activation of chromatin-remodeling complex RUVBL1. In contrast to conventional urothelial carcinomas that based on their expression can be equally divided into luminal and basal subtypes, micropapillary cancer is almost exclusively luminal, displaying enrichment of active peroxisome proliferator-activated receptor γ and suppression of p63 target genes. As with conventional luminal urothelial carcinomas, a subset of micropapillary cancers exhibit activation of wild-type p53 downstream genes and represent the most aggressive molecular subtype of the disease with the shortest survival. The involvement of miR-296 and RUVBL1 in the development of micropapillary bladder cancer was identified by the analyses of correlative associations of genome expression profiles and requires mechanistic validation. CONCLUSIONS Micropapillary cancer evolves through the luminal pathway and is characterized by the activation of miR-296 and RUVBL1 target genes. PATIENT SUMMARY Our observations have important implications for prognosis and for possible future development of more effective therapies for micropapillary bladder cancer.

Collaboration


Dive into the Anna Gambin's collaboration.

Top Co-Authors

Avatar

Tomasz Gambin

Warsaw University of Technology

View shared research outputs
Top Co-Authors

Avatar

Pawel Stankiewicz

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Magdalena Bartnik

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge