Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Greka is active.

Publication


Featured researches published by Anna Greka.


Nature Neuroscience | 2003

TRPC5 is a regulator of hippocampal neurite length and growth cone morphology

Anna Greka; Betsy Navarro; Elena Oancea; Anne Duggan; David E. Clapham

Growth cone motility is regulated by both fast voltage-dependent Ca2+ channels and by unknown receptor-operated Ca2+ entry mechanisms. Transient receptor potential (TRP) homomeric TRPC5 ion channels are receptor-operated, Ca2+-permeable channels predominantly expressed in the brain. Here we show that TRPC5 is expressed in growth cones of young rat hippocampal neurons. Our results indicate that TRPC5 channel subunits interact with the growth cone–enriched protein stathmin 2, are packaged into vesicles and are carried to newly forming growth cones and synapses. Once in the growth cone, TRPC5 channels regulate neurite extension and growth-cone morphology. Dominant-negative TRPC5 expression allowed significantly longer neurites and filopodia to form. We conclude that TRPC5 channels are important components of the mechanism controlling neurite extension and growth cone morphology.


Annual Review of Physiology | 2012

Cell Biology and Pathology of Podocytes

Anna Greka; Peter Mundel

As an integral member of the filtration barrier in the kidney glomerulus, the podocyte is in a unique geographical position: It is exposed to chemical signals from the urinary space (Bowmans capsule), it receives and transmits chemical and mechanical signals to/from the glomerular basement membrane upon which it elaborates, and it receives chemical and mechanical signals from the vascular space with which it also communicates. As with every cell, the ability of the podocyte to receive signals from the surrounding environment and to translate them to the intracellular milieu is dependent largely on molecules residing on the cell membrane. These molecules are the first-line soldiers in the ongoing battle to sense the environment, to respond to friendly signals, and to defend against injurious foes. In this review, we take a membrane biologists view of the podocyte, examining the many membrane receptors, channels, and other signaling molecules that have been implicated in podocyte biology. Although we attempt to be comprehensive, our goal is not to capture every membrane-mediated pathway but rather to emphasize that this approach may be fruitful in understanding the podocyte and its unique properties.


Journal of The American Society of Nephrology | 2007

Induction of TRPC6 Channel in Acquired Forms of Proteinuric Kidney Disease

Clemens C. Möller; Changli Wei; Mehmet M. Altintas; Jing Li; Anna Greka; Takamoto Ohse; Jeffrey W. Pippin; Maria Pia Rastaldi; Stefan Wawersik; Susan C. Schiavi; Anna Henger; Matthias Kretzler; Stuart J. Shankland; Jochen Reiser

Injury to podocytes and their slit diaphragms typically leads to marked proteinuria. Mutations in the TRPC6 gene that codes for a slit diaphragm-associated, cation-permeable ion channel have been shown recently to co-segregate with hereditary forms of progressive kidney failure. Herein is shown that induced expression of wild-type TRPC6 is a common feature of human proteinuric kidney diseases, with highest induction observed in membranous nephropathy. Cultured podocytes that are exposed to complement upregulate TRPC6 protein. Stimulation of receptor-operated channels in puromycin aminonucleoside-treated podocytes leads to increased calcium influx in a time- and dosage-dependent manner. Mechanistically, it is shown that TRPC6 is functionally connected to the podocyte actin cytoskeleton, which is rearranged upon overexpression of TRPC6. Transient in vivo gene delivery of TRPC6 into mice leads to expression of TRPC6 protein at the slit diaphragm and causes proteinuria. These studies suggest the involvement of TRPC6 in the pathology of nongenetic forms of proteinuric disease.


The New England Journal of Medicine | 2013

Abatacept in B7-1–Positive Proteinuric Kidney Disease

Chih Chuan Yu; Alessia Fornoni; Astrid Weins; Samy Hakroush; Dony Maiguel; Junichiro Sageshima; Linda Chen; Gaetano Ciancio; Mohd Hafeez Faridi; Daniel Behr; Kirk N. Campbell; Jer Ming Chang; Hung Chun Chen; Jun Oh; Christian Faul; M. Amin Arnaout; Paolo Fiorina; Vineet Gupta; Anna Greka; George W. Burke; Peter Mundel

Abatacept (cytotoxic T-lymphocyte-associated antigen 4-immunoglobulin fusion protein [CTLA-4-Ig]) is a costimulatory inhibitor that targets B7-1 (CD80). The present report describes five patients who had focal segmental glomerulosclerosis (FSGS) (four with recurrent FSGS after transplantation and one with primary FSGS) and proteinuria with B7-1 immunostaining of podocytes in kidney-biopsy specimens. Abatacept induced partial or complete remissions of proteinuria in these patients, suggesting that B7-1 may be a useful biomarker for the treatment of some glomerulopathies. Our data indicate that abatacept may stabilize β1-integrin activation in podocytes and reduce proteinuria in patients with B7-1-positive glomerular disease.


Science Signaling | 2010

Antagonistic Regulation of Actin Dynamics and Cell Motility by TRPC5 and TRPC6 Channels

Dequan Tian; Sarah Melissa P. Jacobo; David Billing; Anete Rozkalne; Steven D. Gage; Theodora Anagnostou; Hermann Pavenstädt; Hsiang-Hao Hsu; Johannes Schlöndorff; Arnolt J. Ramos; Anna Greka

Coupling TRPC5 and TRPC6 calcium channels to different Rho GTPases allows calcium to both promote and inhibit cell migration. Signaling Stop and Go Calcium-dependent remodeling of the actin cytoskeleton through members of the Rho family of small guanosine triphosphatases (Rho GTPases) is crucial for cell migration. Tian et al. investigated the upstream regulation of this process in kidney podocytes, a class of cells associated with glomerular capillaries whose contractile function is crucial to maintenance of the kidney filtration barrier. They found that, although angiotensin II elicited calcium influx through both TRPC5 and TRPC6 (transient receptor potential canonical type 5 and 6) channels, TRPC5 signaled through Rac1 to promote cell motility, whereas TRPC6 signaled through RhoA to inhibit it. Mechanistic analyses indicated that differential activation of the two GTPases depended on their location relative to the two channels: TRPC5 was present in a complex with Rac1 and TRPC6 was associated with RhoA, enabling their antagonistic regulation of the cytoskeleton and thereby their opposing effects on cell migration. The Rho family of small guanosine triphosphatases (Rho GTPases: RhoA, Cdc42, and Rac1) regulates many aspects of cell behavior, including actin dynamics and cell migration. The generation of calcium ion (Ca2+) microdomains is critical in promoting cell migration because they control the localized activity of Rho GTPases. We identified receptor-activated TRPC5 and TRPC6 (transient receptor potential canonical type 5 and 6) channels as antagonistic regulators of actin remodeling and cell motility in fibroblasts and kidney podocytes. We show that TRPC5 is in a molecular complex with Rac1, whereas TRPC6 is in a molecular complex with RhoA. TRPC5-mediated Ca2+ influx induces Rac1 activation, thereby promoting cell migration, whereas TRPC6-mediated Ca2+ influx increases RhoA activity, thereby inhibiting cell migration. Our data unveil antagonistic Ca2+ influx pathways as a conserved signaling mechanism for the integrated regulation of cell migration.


Journal of The American Society of Nephrology | 2010

Metabolite Profiling Identifies Markers of Uremia

Eugene P. Rhee; Amanda Souza; Laurie A. Farrell; Martin R. Pollak; Gregory D. Lewis; David Steele; Ravi Thadhani; Clary B. Clish; Anna Greka; Robert E. Gerszten

ESRD is a state of small-molecule disarray. We applied liquid chromatography/tandem mass spectrometry-based metabolite profiling to survey>350 small molecules in 44 fasting subjects with ESRD, before and after hemodialysis, and in 10 age-matched, at-risk fasting control subjects. At baseline, increased levels of polar analytes and decreased levels of lipid analytes characterized uremic plasma. In addition to confirming the elevation of numerous previously identified uremic toxins, we identified several additional markers of ESRD, including dicarboxylic acids (adipate, malonate, methylmalonate, and maleate), biogenic amines, nucleotide derivatives, phenols, and sphingomyelins. The pattern of lipids was notable for a universal decrease in lower-molecular-weight triacylglycerols, and an increase in several intermediate-molecular-weight triacylglycerols in ESRD compared with controls; standard measurement of total triglycerides obscured this heterogeneity. These observations suggest disturbed triglyceride catabolism and/or beta-oxidation in ESRD. As expected, the hemodialysis procedure was associated with significant decreases in most polar analytes. Unexpected increases in several metabolites, however, indicated activation of a broad catabolic program, including glycolysis, lipolysis, ketosis, and nucleotide breakdown. In summary, this study demonstrates the application of metabolite profiling to identify markers of ESRD, provide perspective on uremic dyslipidemia, and broaden our understanding of the biochemical effects of hemodialysis.


Journal of Clinical Investigation | 2013

Inhibition of the TRPC5 ion channel protects the kidney filter

Thomas Schaldecker; Sookyung Kim; Constantine Tarabanis; Dequan Tian; Samy Hakroush; Philip Castonguay; Wooin Ahn; Hanna Wallentin; Hans Heid; Corey R. Hopkins; Craig W. Lindsley; Antonio Riccio; Lisa Buvall; Astrid Weins; Anna Greka

An intact kidney filter is vital to retention of essential proteins in the blood and removal of waste from the body. Damage to the filtration barrier results in albumin loss in the urine, a hallmark of cardiovascular disease and kidney failure. Here we found that the ion channel TRPC5 mediates filtration barrier injury. Using Trpc5-KO mice, a small-molecule inhibitor of TRPC5, Ca2+ imaging in isolated kidney glomeruli, and live imagining of podocyte actin dynamics, we determined that loss of TRPC5 or its inhibition abrogates podocyte cytoskeletal remodeling. Inhibition or loss of TRPC5 prevented activation of the small GTP-binding protein Rac1 and stabilized synaptopodin. Importantly, genetic deletion or pharmacologic inhibition of TRPC5 protected mice from albuminuria. These data reveal that the Ca2+-permeable channel TRPC5 is an important determinant of albuminuria and identify TRPC5 inhibition as a therapeutic strategy for the prevention or treatment of proteinuric kidney disease.


PLOS ONE | 2014

An improved canine genome and a comprehensive catalogue of coding genes and non-coding transcripts.

Marc P. Hoeppner; Andrew L. Lundquist; Mono Pirun; Jennifer R. S. Meadows; Neda Zamani; Jeremy Johnson; Görel Sundström; April Cook; Michael Fitzgerald; Ross Swofford; Evan Mauceli; Behrooz Torabi Moghadam; Anna Greka; Jessica Alföldi; Amr Abouelleil; Lynne Aftuck; Daniel Bessette; Aaron M. Berlin; Adam Brown; Gary Gearin; Annie Lui; J. Pendexter Macdonald; Margaret Priest; Terrance Shea; Jason Turner-Maier; Andrew Zimmer; Eric S. Lander; Federica Di Palma; Kerstin Lindblad-Toh; Manfred Grabherr

The domestic dog, Canis familiaris, is a well-established model system for mapping trait and disease loci. While the original draft sequence was of good quality, gaps were abundant particularly in promoter regions of the genome, negatively impacting the annotation and study of candidate genes. Here, we present an improved genome build, canFam3.1, which includes 85 MB of novel sequence and now covers 99.8% of the euchromatic portion of the genome. We also present multiple RNA-Sequencing data sets from 10 different canine tissues to catalog ∼175,000 expressed loci. While about 90% of the coding genes previously annotated by EnsEMBL have measurable expression in at least one sample, the number of transcript isoforms detected by our data expands the EnsEMBL annotations by a factor of four. Syntenic comparison with the human genome revealed an additional ∼3,000 loci that are characterized as protein coding in human and were also expressed in the dog, suggesting that those were previously not annotated in the EnsEMBL canine gene set. In addition to ∼20,700 high-confidence protein coding loci, we found ∼4,600 antisense transcripts overlapping exons of protein coding genes, ∼7,200 intergenic multi-exon transcripts without coding potential, likely candidates for long intergenic non-coding RNAs (lincRNAs) and ∼11,000 transcripts were reported by two different library construction methods but did not fit any of the above categories. Of the lincRNAs, about 6,000 have no annotated orthologs in human or mouse. Functional analysis of two novel transcripts with shRNA in a mouse kidney cell line altered cell morphology and motility. All in all, we provide a much-improved annotation of the canine genome and suggest regulatory functions for several of the novel non-coding transcripts.


Journal of The American Society of Nephrology | 2011

Balancing Calcium Signals through TRPC5 and TRPC6 in Podocytes

Anna Greka; Peter Mundel

Calcium (Ca(2+)) ions are important mediators of cellular homeostasis owing to their ability to elicit a dynamic, transient, and tightly regulated range of biochemical responses. More than a decade ago, a nonselective, Ca(2+)-permeable, cationic conductance was identified in podocytes downstream of angiotensin II (Ang II) signaling, but its molecular structure remained elusive. Six years ago, transient receptor potential canonical 6 (TRPC6) mutations were found in families with hereditary FSGS, and TRPC5 and TRPC6 channels are now known as the Ca(2+) influx pathways for this previously described, nonselective, cationic current in podocytes. Ang II activation engages this Ca(2+) influx to modulate the actin cytoskeleton in podocytes. These discoveries dovetail with previously described regulation of actin dynamics by the Ca(2+)-activated phosphatase, calcineurin, and the emergence of Rho GTPases as critical regulators of podocyte function in health and disease. Understanding the interconnected signaling regulated by Ca(2+) currents offers potential new therapeutic targets and highlights the notion that synergistic therapies targeting multiple levels of biochemistry may be useful in treating proteinuric kidney disease.


Developmental Cell | 2003

Mechanism of Persistent Protein Kinase D1 Translocation and Activation

Elena Oancea; Vassilios J. Bezzerides; Anna Greka; David E. Clapham

The specificity of many signal transduction pathways relies on the spatiotemporal features of each signaling step. G protein-coupled receptor-mediated activation of protein kinases leads to diverse cellular effects. Upon receptor activation, PKD1 and several C-type protein kinases (PKCs), translocate to the plasma membrane and become catalytically active. Here we show that, unlike PKCs, PKD1 remains active at the membrane for hours. The two DAG binding C1 domains of PKD1 have distinct functional roles in targeting and maintaining PKD1 at the plasma membrane. C1A achieves fast, maximal, and reversible translocation, while C1B translocates partially, but persistently, to the plasma membrane. The persistent localization requires the C1B domain of PKD1, which binds Galphaq. We incorporate the kinetics of PKD1 translocation into a three-state model that suggests how PKD1 binding to DAG and Galphaq uniquely encodes frequency-dependent PKD1 signaling.

Collaboration


Dive into the Anna Greka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Astrid Weins

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David E. Clapham

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge