Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Grygoruk is active.

Publication


Featured researches published by Anna Grygoruk.


Molecular Psychiatry | 2006

Overexpression of the Drosophila vesicular monoamine transporter increases motor activity and courtship but decreases the behavioral response to cocaine

Hui-Yun Chang; Anna Grygoruk; Elizabeth S. Brooks; Larry C. Ackerson; Nigel T. Maidment; Roland J. Bainton; David E. Krantz

Aminergic signaling pathways have been implicated in a variety of neuropsychiatric illnesses, but the mechanisms by which these pathways influence complex behavior remain obscure. Vesicular monoamine transporters (VMATs) have been shown to regulate the amount of monoamine neurotransmitter that is stored and released from synaptic vesicles in mammalian systems, and an increase in their expression has been observed in bipolar patients. The model organism Drosophila melanogaster provides a powerful, but underutilized genetic system for studying how dopamine (DA) and serotonin (5HT) may influence behavior. We show that a Drosophila isoform of VMAT (DVMAT-A) is expressed in both dopaminergic and serotonergic neurons in the adult Drosophila brain. Overexpression of DVMAT-A in these cells potentiates stereotypic grooming behaviors and locomotion and can be reversed by reserpine, which blocks DVMAT activity, and haloperidol, a DA receptor antagonist. We also observe a prolongation of courtship behavior, a decrease in successful mating and a decrease in fertility, suggesting a role for aminergic circuits in the modulation of sexual behaviors. Finally, we find that DMVAT-A overexpression decreases the flys sensitivity to cocaine, suggesting that the synaptic machinery responsible for this behavior may be downregulated. DVMAT transgenes may be targeted to additional neuronal pathways using standard Drosophila techniques, and our results provide a novel paradigm to study the mechanisms by which monoamines regulate complex behaviors relevant to neuropsychiatric illness.


Traffic | 2008

Trafficking of vesicular neurotransmitter transporters.

Hao Fei; Anna Grygoruk; Elizabeth S. Brooks; Audrey Chen; David E. Krantz

Vesicular neurotransmitter transporters are required for the storage of all classical and amino acid neurotransmitters in secretory vesicles. Transporter expression can influence neurotransmitter storage and release, and trafficking targets the transporters to different types of secretory vesicles. Vesicular transporters traffic to synaptic vesicles (SVs) as well as large dense core vesicles and are recycled to SVs at the nerve terminal. Some of the intrinsic signals for these trafficking events have been defined and include a dileucine motif present in multiple transporter subtypes, an acidic cluster in the neural isoform of the vesicular monoamine transporter (VMAT) 2 and a polyproline motif in the vesicular glutamate transporter (VGLUT) 1. The sorting of VMAT2 and the vesicular acetylcholine transporter to secretory vesicles is regulated by phosphorylation. In addition, VGLUT1 uses alternative endocytic pathways for recycling back to SVs following exocytosis. Regulation of these sorting events has the potential to influence synaptic transmission and behavior.


PLOS Genetics | 2008

A glial variant of the vesicular monoamine transporter is required to store histamine in the Drosophila visual system.

Rafael Romero-Calderón; Guido Uhlenbrock; Jolanta A. Borycz; Anne F. Simon; Anna Grygoruk; Susan K. Yee; Amy Shyer; Larry C. Ackerson; Nigel T. Maidment; Ian A. Meinertzhagen; Bernhard T. Hovemann; David E. Krantz

Unlike other monoamine neurotransmitters, the mechanism by which the brains histamine content is regulated remains unclear. In mammals, vesicular monoamine transporters (VMATs) are expressed exclusively in neurons and mediate the storage of histamine and other monoamines. We have studied the visual system of Drosophila melanogaster in which histamine is the primary neurotransmitter released from photoreceptor cells. We report here that a novel mRNA splice variant of Drosophila VMAT (DVMAT-B) is expressed not in neurons but rather in a small subset of glia in the lamina of the flys optic lobe. Histamine contents are reduced by mutation of dVMAT, but can be partially restored by specifically expressing DVMAT-B in glia. Our results suggest a novel role for a monoamine transporter in glia that may be relevant to histamine homeostasis in other systems.


Genetics | 2013

Dispensable, redundant, complementary and cooperative roles of dopamine, octopamine and serotonin in Drosophila melanogaster

Audrey Chen; Fanny S. Ng; Tim Lebestky; Anna Grygoruk; Christine Djapri; Harshul A. Zaveri; Filmon Mehanzel; Rod Najibi; Gabriel Seidman; Niall P. Murphy; Rachel L. Kelly; Larry C. Ackerson; Nigel T. Maidment; F. Rob Jackson; David E. Krantz

To investigate the regulation of Drosophila melanogaster behavior by biogenic amines, we have exploited the broad requirement of the vesicular monoamine transporter (VMAT) for the vesicular storage and exocytotic release of all monoamine neurotransmitters. We used the Drosophila VMAT (dVMAT) null mutant to globally ablate exocytotic amine release and then restored DVMAT activity in either individual or multiple aminergic systems, using transgenic rescue techniques. We find that larval survival, larval locomotion, and female fertility rely predominantly on octopaminergic circuits with little apparent input from the vesicular release of serotonin or dopamine. In contrast, male courtship and fertility can be rescued by expressing DVMAT in octopaminergic or dopaminergic neurons, suggesting potentially redundant circuits. Rescue of major aspects of adult locomotion and startle behavior required octopamine, but a complementary role was observed for serotonin. Interestingly, adult circadian behavior could not be rescued by expression of DVMAT in a single subtype of aminergic neurons, but required at least two systems, suggesting the possibility of unexpected cooperative interactions. Further experiments using this model will help determine how multiple aminergic systems may contribute to the regulation of other behaviors. Our data also highlight potential differences between behaviors regulated by standard exocytotic release and those regulated by other mechanisms.


Genetics | 2008

Drosophila Vesicular Monoamine Transporter Mutants Can Adapt to Reduced or Eliminated Vesicular Stores of Dopamine and Serotonin

Anne F. Simon; Richard W. Daniels; Rafael Romero-Calderón; Anna Grygoruk; Hui-Yun Chang; Rod Najibi; David Shamouelian; Evelyn D. Salazar; Mordecai Solomon; Larry C. Ackerson; Nigel T. Maidment; Aaron DiAntonio; David E. Krantz

Physiologic and pathogenic changes in amine release induce dramatic behavioral changes, but the underlying cellular mechanisms remain unclear. To investigate these adaptive processes, we have characterized mutations in the Drosophila vesicular monoamine transporter (dVMAT), which is required for the vesicular storage of dopamine, serotonin, and octopamine. dVMAT mutant larvae show reduced locomotion and decreased electrical activity in motoneurons innervating the neuromuscular junction (NMJ) implicating central amines in the regulation of these activities. A parallel increase in evoked glutamate release by the motoneuron is consistent with a homeostatic adaptation at the NMJ. Despite the importance of aminergic signaling for regulating locomotion and other behaviors, adult dVMAT homozygous null mutants survive under conditions of low population density, thus allowing a phenotypic characterization of adult behavior. Homozygous mutant females are sterile and show defects in both egg retention and development; males also show reduced fertility. Homozygotes show an increased attraction to light but are mildly impaired in geotaxis and escape behaviors. In contrast, heterozygous mutants show an exaggerated escape response. Both hetero- and homozygous mutants demonstrate an altered behavioral response to cocaine. dVMAT mutants define potentially adaptive responses to reduced or eliminated aminergic signaling and will be useful to identify the underlying molecular mechanisms.


Current Biology | 2015

Olfactory Neuromodulation of Motion Vision Circuitry in Drosophila

Sara Wasserman; Jacob W. Aptekar; Patrick Lu; Jade Nguyen; Austin Wang; Mehmet F. Keles; Anna Grygoruk; David E. Krantz; Camilla Larsen; Mark A. Frye

Summary It is well established that perception is largely multisensory [1]; often served by modalities such as touch, vision, and hearing that detect stimuli emanating from a common point in space [2, 3]; and processed by brain tissue maps that are spatially aligned [4]. However, the neural interactions among modalities that share no spatial stimulus domain yet are essential for robust perception within noisy environments remain uncharacterized. Drosophila melanogaster makes its living navigating food odor plumes. Odor acts to increase the strength of gaze-stabilizing optomotor reflexes [5] to keep the animal aligned within an invisible plume, facilitating odor localization in free flight [6–8]. Here, we investigate the cellular mechanism for cross-modal behavioral interactions. We characterize a wide-field motion-selective interneuron of the lobula plate that shares anatomical and physiological similarities with the “Hx” neuron identified in larger flies [9, 10]. Drosophila Hx exhibits cross-modal enhancement of visual responses by paired odor, and presynaptic inputs to the lobula plate are required for behavioral odor tracking but are not themselves the target of odor modulation, nor is the neighboring wide-field “HSE” neuron [11]. Octopaminergic neurons mediating increased visual responses upon flight initiation [12] also show odor-evoked calcium modulations and form connections with Hx dendrites. Finally, restoring synaptic vesicle trafficking within the octopaminergic neurons of animals carrying a null mutation for all aminergic signaling [13] is sufficient to restore odor-tracking behavior. These results are the first to demonstrate cellular mechanisms underlying visual-olfactory integration required for odor localization in fruit flies, which may be representative of adaptive multisensory interactions across taxa.


The Journal of Neuroscience | 2014

The Redistribution of Drosophila Vesicular Monoamine Transporter Mutants from Synaptic Vesicles to Large Dense-Core Vesicles Impairs Amine-Dependent Behaviors

Anna Grygoruk; Audrey Chen; Ciara A. Martin; Hao Fei; Gabriel Gutierrez; Traci Biedermann; Rod Najibi; Richard Hadi; Amit K. Chouhan; Niall P. Murphy; Felix E. Schweizer; Gregory T. Macleod; Nigel T. Maidment; David E. Krantz

Monoamine neurotransmitters are stored in both synaptic vesicles (SVs), which are required for release at the synapse, and large dense-core vesicles (LDCVs), which mediate extrasynaptic release. The contributions of each type of vesicular release to specific behaviors are not known. To address this issue, we generated mutations in the C-terminal trafficking domain of the Drosophila vesicular monoamine transporter (DVMAT), which is required for the vesicular storage of monoamines in both SVs and LDCVs. Deletion of the terminal 23 aa (DVMAT-Δ3) reduced the rate of endocytosis and localization of DVMAT to SVs, but supported localization to LDCVs. An alanine substitution mutation in a tyrosine-based motif (DVMAT-Y600A) also reduced sorting to SVs and showed an endocytic deficit specific to aminergic nerve terminals. Redistribution of DVMAT-Y600A from SV to LDCV fractions was also enhanced in aminergic neurons. To determine how these changes might affect behavior, we expressed DVMAT-Δ3 and DVMAT-Y600A in a dVMAT null genetic background that lacks endogenous dVMAT activity. When expressed ubiquitously, DVMAT-Δ3 showed a specific deficit in female fertility, whereas DVMAT-Y600A rescued behavior similarly to DVMAT-wt. In contrast, when expressed more specifically in octopaminergic neurons, both DVMAT-Δ3 and DVMAT-Y600A failed to rescue female fertility, and DVMAT-Y600A showed deficits in larval locomotion. DVMAT-Y600A also showed more severe dominant effects than either DVMAT-wt or DVMAT-Δ3. We propose that these behavioral deficits result from the redistribution of DVMAT from SVs to LDCVs. By extension, our data suggest that the balance of amine release from SVs versus that from LDCVs is critical for the function of some aminergic circuits.


Journal of Biological Chemistry | 2010

A tyrosine-based motif localizes a Drosophila vesicular transporter to synaptic vesicles in vivo.

Anna Grygoruk; Hao Fei; Richard W. Daniels; Bradley R. Miller; Aaron DiAntonio; David E. Krantz

Vesicular neurotransmitter transporters must localize to synaptic vesicles (SVs) to allow regulated neurotransmitter release at the synapse. However, the signals required to localize vesicular proteins to SVs in vivo remain unclear. To address this question we have tested the effects of mutating proposed trafficking domains in Drosophila orthologs of the vesicular monoamine and glutamate transporters, DVMAT-A and DVGLUT. We show that a tyrosine-based motif (YXXY) is important both for DVMAT-A internalization from the cell surface in vitro, and localization to SVs in vivo. In contrast, DVGLUT deletion mutants that lack a putative C-terminal trafficking domain show more modest defects in both internalization in vitro and trafficking to SVs in vivo. Our data show for the first time that mutation of a specific trafficking motif can disrupt localization to SVs in vivo and suggest possible differences in the sorting of VMATs versus VGLUTs to SVs at the synapse.


Fly | 2010

Vesicular neurotransmitter transporter trafficking in vivo: Moving from cells to flies

Anna Grygoruk; Hao Fei; Richard W. Daniels; Bradley R. Miller; Audrey Chen; Aaron DiAntonio; David E. Krantz

During exocytosis, classical and amino acid neurotransmitters are released from the lumen of synaptic vesicles to allow signaling at the synapse. The storage of neurotransmitters in synaptic vesicles and other types of secretory vesicles requires the activity of specific vesicular transporters. Glutamate and monoamines such as dopamine are packaged by VGLUTs and VMATs respectively. Changes in the localization of either protein have the potential to up- or down regulate neurotransmitter release, and some of the mechanisms for sorting these proteins to secretory vesicles have been investigated in cultured cells in vitro. We have used Drosophila molecular genetic techniques to study vesicular transporter trafficking in an intact organism and have identified a motif required for localizing Drosophila VMAT (DVMAT) to synaptic vesicles in vivo. In contrast to DVMAT, large deletions of Drosophila VGLUT (DVGLUT) show relatively modest deficits in localizing to synaptic vesicles, suggesting that DVMAT and DVGLUT may undergo different modes of trafficking at the synapse. Further in vivo studies of DVMAT trafficking mutants will allow us to determine how changes in the localization of vesicular transporters affect the nervous system as a whole and complex behaviors mediated by aminergic circuits.


Journal of Neurobiology | 2005

A splice variant of the Drosophila vesicular monoamine transporter contains a conserved trafficking domain and functions in the storage of dopamine, serotonin, and octopamine.

Christina L. Greer; Anna Grygoruk; David E. Patton; Brett Ley; Rafael Romero-Calderón; Hui-Yun Chang; Roozbeh Houshyar; Roland J. Bainton; Aaron DiAntonio; David E. Krantz

Collaboration


Dive into the Anna Grygoruk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron DiAntonio

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Audrey Chen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard W. Daniels

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Bradley R. Miller

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hao Fei

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hui-Yun Chang

National Tsing Hua University

View shared research outputs
Researchain Logo
Decentralizing Knowledge