Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Haldrup is active.

Publication


Featured researches published by Anna Haldrup.


Nature | 2000

The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis.

Christina Lunde; Poul Erik Jensen; Anna Haldrup; Juergen Knoetzel; Henrik Vibe Scheller

Photosynthesis in plants involves two photosystems responsible for converting light energy into redox processes. The photosystems, PSI and PSII, operate largely in series, and therefore their excitation must be balanced in order to optimize photosynthetic performance. When plants are exposed to illumination favouring either PSII or PSI they can redistribute excitation towards the light-limited photosystem. Long-term changes in illumination lead to changes in photosystem stoichiometry. In contrast, state transition is a dynamic mechanism that enables plants to respond rapidly to changes in illumination. When PSII is favoured (state 2), the redox conditions in the thylakoids change and result in activation of a protein kinase. The kinase phosphorylates the main light-harvesting complex (LHCII) and the mobile antenna complex is detached from PSII. It has not been clear if attachment of LHCII to PSI in state 2 is important in state transitions. Here we show that in the absence of a specific PSI subunit, PSI-H, LHCII cannot transfer energy to PSI, and state transitions are impaired.


Trends in Plant Science | 2001

Balance of power: a view of the mechanism of photosynthetic state transitions

Anna Haldrup; Poul Erik Jensen; Christina Lunde; Henrik Vibe Scheller

Photosynthesis in plants involves photosystem I and photosystem II, both of which use light energy to drive redox processes. Plants can balance the distribution of absorbed light energy between the two photosystems. When photosystem II is favoured, a mobile pool of light harvesting complex II moves from photosystem II to photosystem I. This short-term and reversible redistribution is known as a state transition. It is associated with changes in the phosphorylation of light harvesting complex II but the regulation is complex. Redistribution of energy during state transitions depends on an altered binding equilibrium between the light harvesting complex II-photosystem II and light harvesting complex II-photosystem I complexes.


Biochimica et Biophysica Acta | 2001

Role of subunits in eukaryotic Photosystem I

Henrik Vibe Scheller; Poul Erik Jensen; Anna Haldrup; Christina Lunde; Juergen Knoetzel

Photosystem I (PSI) of eukaryotes has a number of features that distinguishes it from PSI of cyanobacteria. In plants, the PSI core has three subunits that are not found in cyanobacterial PSI. The remaining 11 subunits of the core are conserved but several of the subunits have a different role in eukaryotic PSI. A distinguishing feature of eukaryotic PSI is the membrane-imbedded peripheral antenna. Light-harvesting complex I is composed of four different subunits and is specific for PSI. Light-harvesting complex II can be associated with both PSI and PSII. Several of the core subunits interact with the peripheral antenna proteins and are important for proper function of the peripheral antenna. The review describes the role of the different subunits in eukaryotic PSI. The emphasis is on features that are different from cyanobacterial PSI.


Plant Molecular Biology | 1998

The xylose isomerase gene from Thermoanaerobacterium thermosulfurogenes allows effective selection of transgenic plant cells using D-xylose as the selection agent

Anna Haldrup; Steen Guldager Petersen; Finn T. Okkels

The xylose isomerase gene (xylA) from Thermoanaerobacterium thermosulfurogenes (formerly Clostridium thermosulfurogenes) has been expressed in three plant species (potato, tobacco, and tomato) and transgenic plants have been selected on xylose-containing medium. The xylose isomerase gene was transferred to the target plant by Agrobacterium-mediated transformation. The xylose isomerase gene was expressed using the enhanced cauliflower mosaic virus (CaMV) 35S promoter and the Ω′ translation enhancer sequence from tobacco mosaic virus. Unoptimized selection studies showed that, in potato and tomato, the xylose isomerase selection was more efficient than the established kanamycin resistance selection, whereas in tobacco the opposite was observed. Efficiency may be increased by optimization. The xylose isomerase system enables the transgenic cells to utilize xylose as a carbohydrate source. It is an example of a positive selection system because transgenic cells proliferate while non-transgenic cells are starved but still survive. This contrasts to antibiotic or herbicide resistance where transgenic cells survive on a selective medium but non-transgenic cells are killed. The results give access to a new selection method which is devoid of the disadvantages of antibiotic or herbicide selection.


Planta | 2005

Photoinhibition of photosystem I

Henrik Vibe Scheller; Anna Haldrup

Photosystem I (PSI) is a large pigment-protein complex consisting of about 18 different subunits in plants. Recently, the structure of PSI isolated from pea was solved by X-ray crystallography at a resolution of 4.4 A (Ben-Shem et al. 2003). This work has highlighted the structural similarities and differences between plant PSI and cyanobacterial PSI, where a 2.5 A structure was published earlier (Jordan et al. 2001). The subunits of PSI are traditionally divided into 14 core subun its—most of which are also found in cyanobacte ria—and four homologous light harvesting complex I (LHCI) subunits, which are specific to plants (Fig. 1). Under certain conditions, other LHCI subunits can be seen—at least in Arabidopsis (Klimmek et al. 2005). The PSI complex binds about 167 chlorophyll molecules (Ben-shem et al. 2003). A special pair of chlorophyll a molecules constitutes the P700 reaction center and


Journal of Biological Chemistry | 2000

Down-regulation of the PSI-F Subunit of Photosystem I (PSI) in Arabidopsis thaliana THE PSI-F SUBUNIT IS ESSENTIAL FOR PHOTOAUTOTROPHIC GROWTH AND CONTRIBUTES TO ANTENNA FUNCTION

Anna Haldrup; David J. Simpson; Henrik Vibe Scheller

The PSI-F subunit of photosystem I is a transmembrane protein with a large lumenal domain. The role of PSI-F was investigated in Arabidopsis plants transformed with an antisense construct of the psaF cDNA. Several plant lines with reduced amounts of the PSI-F subunit were generated. Many of the transgenic plants died, apparently because they were unable to survive without the PSI-F subunit. Plants with 5% of PSI-F were capable of photoautotrophic growth but were much smaller than wild-type plants. The plants suffered severely under normal growth conditions but recovered somewhat in the dark indicating chronic photoinhibition. Photosystem I lacking PSI-F was less stable, and the stromal subunits PSI-C, PSI-D, and PSI-E were present in lower amounts than in wild type. The lack of PSI-F resulted in an inability of light-harvesting complex I-730 to transfer energy to the P700 reaction center. In thylakoids deficient in PSI-F, the steady state NADP+reduction rate was only 10% of the wild-type levels indicating a lower efficiency in oxidation of plastocyanin. Surprisingly, the lack of PSI-F also gave rise to disorganization of the thylakoids. The strict arrangement in grana and stroma lamellae was lost, and instead a network of elongated and distorted grana was observed.


Physiologia Plantarum | 2008

Sulfur starvation in rice: the effect on photosynthesis, carbohydrate metabolism, and oxidative stress protective pathways

Christina Lunde; Agnieszka Zygadlo; Henrik Toft Simonsen; Per Lassen Nielsen; Andreas Blennow; Anna Haldrup

Sulfur-deficient plants generate a lower yield and have a reduced nutritional value. The process of sulfur acquisition and assimilation play an integral role in plant metabolism, and response to sulfur deficiency involves a large number of plant constituents. Rice (Oryza sativa) is the second most consumed cereal grain, and the effects of sulfur deprivation in rice were analyzed by measuring changes in photosynthesis, carbohydrate metabolism, and antioxidants. The photosynthetic apparatus was severely affected under sulfur deficiency. The Chl content was reduced by 49% because of a general reduction of PSII and PSI and the associated light-harvesting antenna. The PSII efficiency was 31% lower at growth light, and the ability of PSI to photoreduce NADP+ was decreased by 61%. The Rubisco content was also significantly reduced in the sulfur-deprived plants. The imbalances between PSII and PSI, and between photosynthesis and carbon fixation led to a general over-reduction of the photosynthetic electron carriers (higher 1-q(P)). Chromatographic analysis showed that the level of monosaccharides was lower and starch content higher in the sulfur-deprived plants. In contrast, no changes in metabolite levels were found in the tricarboxylic acid or Calvin cycle. The level of the thiol-containing antioxidant, GSH, was 70% lower and the redox state was significantly more oxidized. These changes in GSH status led to an upregulation of the cytosolic isoforms of GSH reductase and monodehydroascorbate reductase. In addition, alternative antioxidants like flavonoids and anthocyanins were increased in the sulfur-deprived plants.


Plant Journal | 2008

AtCYP38 ensures early biogenesis, correct assembly and sustenance of photosystem II

Sari Sirpiö; Anastassia Khrouchtchova; Yagut Allahverdiyeva; Maria Hansson; Rikard Fristedt; Alexander V. Vener; Henrik Vibe Scheller; Poul Erik Jensen; Anna Haldrup; Eva-Mari Aro

SUMMARY AtCYP38 is a thylakoid lumen protein comprising the immunophilin domain and the phosphatase inhibitor module. Here we show the association of AtCYP38 with the photosystem II (PSII) monomer complex and address its functional role using AtCYP38-deficient mutants. The dynamic greening process of etiolated leaves failed in the absence of AtCYP38, due to specific problems in the biogenesis of PSII complexes. Also the development of leaves under short-day conditions was severely disturbed. Detailed biophysical and biochemical analysis of mature AtCYP38-deficient plants from favorable growth conditions (long photoperiod) revealed: (i) intrinsic malfunction of PSII, which (ii) occurred on the donor side of PSII and (iii) was dependent on growing light intensity. AtCYP38 mutant plants also showed decreased accumulation of PSII, which was shown not to originate from impaired D1 synthesis or assembly of PSII monomers, dimers and supercomplexes as such but rather from the incorrect fine-tuning of the oxygen-evolving side of PSII. This, in turn, rendered PSII centers extremely susceptible to photoinhibition. AtCYP38 deficiency also drastically decreased the in vivo phosphorylation of PSII core proteins, probably related to the absence of the AtCYP38 phosphatase inhibitor domain. It is proposed that during PSII assembly AtCYP38 protein guides the proper folding of D1 (and CP43) into PSII, thereby enabling the correct assembly of the water-splitting Mn(4)-Ca cluster even with high turnover of PSII.


Journal of Biological Chemistry | 2000

Down-regulation of the PSI-F subunit of photosystem I in arabidopsis thaliana. The PSI-F subunit is essential for photoautotrophic growth and antenna function

Anna Haldrup; David J. Simpson; Henrik Vibe Scheller

The PSI-F subunit of photosystem I is a transmembrane protein with a large lumenal domain. The role of PSI-F was investigated in Arabidopsis plants transformed with an antisense construct of the psaF cDNA. Several plant lines with reduced amounts of the PSI-F subunit were generated. Many of the transgenic plants died, apparently because they were unable to survive without the PSI-F subunit. Plants with 5% of PSI-F were capable of photoautotrophic growth but were much smaller than wild-type plants. The plants suffered severely under normal growth conditions but recovered somewhat in the dark indicating chronic photoinhibition. Photosystem I lacking PSI-F was less stable, and the stromal subunits PSI-C, PSI-D, and PSI-E were present in lower amounts than in wild type. The lack of PSI-F resulted in an inability of light-harvesting complex I-730 to transfer energy to the P700 reaction center. In thylakoids deficient in PSI-F, the steady state NADP+reduction rate was only 10% of the wild-type levels indicating a lower efficiency in oxidation of plastocyanin. Surprisingly, the lack of PSI-F also gave rise to disorganization of the thylakoids. The strict arrangement in grana and stroma lamellae was lost, and instead a network of elongated and distorted grana was observed.


Journal of Biological Chemistry | 2003

Arabidopsis thaliana Plants Lacking the PSI-D Subunit of Photosystem I Suffer Severe Photoinhibition, Have Unstable Photosystem I Complexes, and Altered Redox Homeostasis in the Chloroplast Stroma

Anna Haldrup; Christina Lunde; Henrik Vibe Scheller

The PSI-D subunit of photosystem I is a hydrophilic subunit of about 18 kDa, which is exposed to the stroma and has an important function in the docking of ferredoxin to photosystem I. We have used an antisense approach to obtain Arabidopsis thaliana plants with only 5–60% of PSI-D. No plants were recovered completely lacking PSI-D, suggesting that PSI-D is essential for a functional PSI in plants. Plants with reduced amounts of PSI-D showed a similar decrease in all other subunits of PSI including the light harvesting complex, suggesting that in the absence of PSI-D, PSI cannot be properly assembled and becomes degraded. Plants with reduced amounts of PSI-D became light-stressed even in low light although they exhibited high non-photochemical quenching (NPQ). The high NPQ was generated by upregulating the level of violaxanthin de-epoxidase and PsbS, which are both essential components of NPQ. Interestingly, the lack of PSI-D affected the redox state of thioredoxin. During the normal light cycle thioredoxin became increasingly oxidized, which was observed as decreasing malate dehydrogenase activity over a 4-h light period. This result shows that photosynthesis was close to normal the first 15 min, but after 2–4 h photoinhibition dominated as the stroma progressively became less reduced. The change in the thiol disulfide redox state might be fatal for the PSI-D-less plants, because reduction of thioredoxin is one of the main switches for the initiation of CO2 assimilation and photoprotection upon light exposure.

Collaboration


Dive into the Anna Haldrup's collaboration.

Top Co-Authors

Avatar

Henrik Vibe Scheller

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helle Naver

Royal Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge