Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Henger is active.

Publication


Featured researches published by Anna Henger.


Nature Medicine | 2008

Modification of kidney barrier function by the urokinase receptor

Changli Wei; Clemens C. Möller; Mehmet M. Altintas; Jing Li; Karin Schwarz; Serena Zacchigna; Liang Xie; Anna Henger; Holger Schmid; Maria Pia Rastaldi; Peter J. Cowan; Matthias Kretzler; Roberto Parrilla; Moise Bendayan; Vineet Gupta; Boris Nikolic; Raghu Kalluri; Peter Carmeliet; Peter Mundel; Jonche Reiser

Podocyte dysfunction, represented by foot process effacement and proteinuria, is often the starting point for progressive kidney disease. Therapies aimed at the cellular level of the disease are currently not available. Here we show that induction of urokinase receptor (uPAR) signaling in podocytes leads to foot process effacement and urinary protein loss via a mechanism that includes lipid-dependent activation of αvβ3 integrin. Mice lacking uPAR (Plaur−/−) are protected from lipopolysaccharide (LPS)-mediated proteinuria but develop disease after expression of a constitutively active β3 integrin. Gene transfer studies reveal a prerequisite for uPAR expression in podocytes, but not in endothelial cells, for the development of LPS-mediated proteinuria. Mechanistically, uPAR is required to activate αvβ3 integrin in podocytes, promoting cell motility and activation of the small GTPases Cdc42 and Rac1. Blockade of αvβ3 integrin reduces podocyte motility in vitro and lowers proteinuria in mice. Our findings show a physiological role for uPAR signaling in the regulation of kidney permeability.


Diabetes | 2006

Modular Activation of Nuclear Factor-κB Transcriptional Programs in Human Diabetic Nephropathy

Holger Schmid; Anissa Boucherot; Yoshinari Yasuda; Anna Henger; Bodo Brunner; Felix Eichinger; Almut Nitsche; Eva Kiss; Markus Bleich; Hermann Josef Gröne; Peter J. Nelson; Detlef Schlöndorff; Clemens D. Cohen; Matthias Kretzler

Diabetic nephropathy (DN) is the leading cause of end-stage renal failure and a major risk factor for cardiovascular mortality in diabetic patients. To evaluate the multiple pathogenetic factors implicated in DN, unbiased mRNA expression screening of tubulointerstitial compartments of human renal biopsies was combined with hypothesis-driven pathway analysis. Expression fingerprints obtained from biopsies with histological diagnosis of DN (n = 13) and from control subjects (pretransplant kidney donors [n = 7] and minimal change disease [n = 4]) allowed us to segregate the biopsies by disease state and stage by the specific expression signatures. Functional categorization showed regulation of genes linked to inflammation in progressive DN. Pathway mapping of nuclear factor-κB (NF-κB), a master transcriptional switch in inflammation, segregated progressive from mild DN and control subjects by showing upregulation of 54 of 138 known NF-κB targets. The promoter regions of regulated NF-κB targets were analyzed using ModelInspector, and the NF-κB module NFKB_IRFF_01 was found to be specifically enriched in progressive disease. Using this module, the induction of eight NFKB_IRFF_01–dependant genes was correctly predicted in progressive DN (B2M, CCL5/RANTES, CXCL10/IP10, EDN1, HLA-A, HLA-B, IFNB1, and VCAM1). The identification of a specific NF-κB promoter module activated in the inflammatory stress response of progressive DN has helped to characterize upstream pathways as potential targets for the treatment of progressive renal diseases such as DN.


Journal of The American Society of Nephrology | 2007

Induction of TRPC6 Channel in Acquired Forms of Proteinuric Kidney Disease

Clemens C. Möller; Changli Wei; Mehmet M. Altintas; Jing Li; Anna Greka; Takamoto Ohse; Jeffrey W. Pippin; Maria Pia Rastaldi; Stefan Wawersik; Susan C. Schiavi; Anna Henger; Matthias Kretzler; Stuart J. Shankland; Jochen Reiser

Injury to podocytes and their slit diaphragms typically leads to marked proteinuria. Mutations in the TRPC6 gene that codes for a slit diaphragm-associated, cation-permeable ion channel have been shown recently to co-segregate with hereditary forms of progressive kidney failure. Herein is shown that induced expression of wild-type TRPC6 is a common feature of human proteinuric kidney diseases, with highest induction observed in membranous nephropathy. Cultured podocytes that are exposed to complement upregulate TRPC6 protein. Stimulation of receptor-operated channels in puromycin aminonucleoside-treated podocytes leads to increased calcium influx in a time- and dosage-dependent manner. Mechanistically, it is shown that TRPC6 is functionally connected to the podocyte actin cytoskeleton, which is rearranged upon overexpression of TRPC6. Transient in vivo gene delivery of TRPC6 into mice leads to expression of TRPC6 protein at the slit diaphragm and causes proteinuria. These studies suggest the involvement of TRPC6 in the pathology of nongenetic forms of proteinuric disease.


Journal of The American Society of Nephrology | 2005

Viral double-stranded RNA aggravates lupus nephritis through toll-like receptor 3 on glomerular mesangial cells and antigen-presenting cells

Prashant S. Patole; Hermann Josef Gröne; Stephan Segerer; Raluca Ciubar; Emilia Belemezova; Anna Henger; Matthias Kretzler; Detlef Schlöndorff; Hans-Joachim Anders

How viral infections trigger autoimmunity is poorly understood. A role for Toll-like receptor 3 (TLR3) was hypothesized in this context as viral double-stranded RNA (dsRNA) activates dendritic cells to secrete type I interferons and cytokines that are known to be associated with the disease activity in systemic lupus erythematosus (SLE). Immunostaining of nephritic kidney sections of autoimmune MRL(lpr/lpr) mice revealed TLR3 expression in infiltrating antigen-presenting cells as well as in glomerular mesangial cells. TLR3-positive cultured mesangial cells that were exposed to synthetic polyinosinic-cytidylic acid (pI:C) RNA in vitro produced CCL2 and IL-6. pI:C RNA activated macrophages and dendritic cells, both isolated from MRL(lpr/lpr) mice, to secrete multiple proinflammatory factors. In vivo, a single injection of pI:C RNA increased serum IL-12p70, IL-6, and IFN-alpha levels. A course of 50 microg of pI:C RNA given every other day from weeks 16 to 18 of age aggravated lupus nephritis in pI:C-treated MRL(lpr/lpr) mice. Serum DNA autoantibody levels were unaltered upon systemic exposure to pI:C RNA in MRL(lpr/lpr) mice, as pI:C RNA, in contrast to CpG-DNA, failed to induce B cell activation. It therefore was concluded that viral dsRNA triggers disease activity of lupus nephritis by mechanisms that are different from those of bacterial DNA. In contrast to CpG-DNA/TLR9 interaction, pI:C RNA/TLR3-mediated disease activity is B cell independent, but activated intrinsic renal cells, e.g., glomerular mesangial cells, to produce cytokines and chemokines, factors that can aggravate autoimmune tissue injury, e.g., lupus nephritis.


Journal of The American Society of Nephrology | 2007

Interstitial Vascular Rarefaction and Reduced VEGF-A Expression in Human Diabetic Nephropathy

Maja T. Lindenmeyer; Matthias Kretzler; Anissa Boucherot; Silvia Berra; Yoshinari Yasuda; Anna Henger; Felix Eichinger; Stefanie Gaiser; Holger Schmid; Maria Pia Rastaldi; Robert W. Schrier; Detlef Schlöndorff; Clemens D. Cohen

Diabetic nephropathy (DN) is a frequent complication in patients with diabetes. Although the majority of DN models and human studies have focused on glomeruli, tubulointerstitial damage is a major feature of DN and an important predictor of renal dysfunction. This study sought to investigate molecular markers of pathogenic pathways in the renal interstitium of patients with DN. Microdissected tubulointerstitial compartments from biopsies with established DN and control kidneys were subjected to expression profiling. Analysis of candidate genes, potentially involved in DN on the basis of common hypotheses, identified 49 genes with significantly altered expression levels in established DN in comparison with controls. In contrast to some rodent models, the growth factors vascular endothelial growth factor A (VEGF-A) and epidermal growth factor (EGF) showed a decrease in mRNA expression in DN. This was validated on an independent cohort of patients with DN by real-time reverse transcriptase-PCR. Immunohistochemical staining for VEGF-A and EGF also showed a reduced expression in DN. The decrease of renal VEGF-A expression was associated with a reduction in peritubular capillary densities shown by platelet-endothelial cell adhesion molecule-1/CD31 staining. Furthermore, a significant inverse correlation between VEGF-A and proteinuria, as well as EGF and proteinuria, and a positive correlation between VEGF-A and hypoxia-inducible factor-1alpha mRNA was found. Thus, in human DN, a decrease of VEGF-A, rather than the reported increase as described in some rodent models, may contribute to the progressive disease. These findings and the questions about rodent models in DN raise a note of caution regarding the proposal to inhibit VEGF-A to prevent progression of DN.


Diabetes | 2009

Enhanced Expression of Janus Kinase–Signal Transducer and Activator of Transcription Pathway Members in Human Diabetic Nephropathy

Céline C. Berthier; Hongyu Zhang; MaryLee Schin; Anna Henger; Robert G. Nelson; Berne Yee; Anissa Boucherot; Matthias A. Neusser; Clemens D. Cohen; Christin Carter-Su; Lawrence S. Argetsinger; Maria Pia Rastaldi; Frank C. Brosius; Matthias Kretzler

OBJECTIVE—Glomerular mesangial expansion and podocyte loss are important early features of diabetic nephropathy, whereas tubulointerstitial injury and fibrosis are critical for progression of diabetic nephropathy to kidney failure. Therefore, we analyzed the expression of genes in glomeruli and tubulointerstitium in kidney biopsies from diabetic nephropathy patients to identify pathways that may be activated in humans but not in murine models of diabetic nephropathy that fail to progress to glomerulosclerosis, tubulointerstitial fibrosis, and kidney failure. RESEARCH DESIGN AND METHODS—Kidney biopsies were obtained from 74 patients (control subjects, early and progressive type 2 diabetic nephropathy). Glomerular and tubulointerstitial mRNAs were microarrayed, followed by bioinformatics analyses. Gene expression changes were confirmed by real-time RT-PCR and immunohistological staining. Samples from db/db C57BLKS and streptozotocin-induced DBA/2J mice, commonly studied murine models of diabetic nephropathy, were analyzed. RESULTS—In human glomeruli and tubulointerstitial samples, the Janus kinase (Jak)-signal transducer and activator of transcription (Stat) pathway was highly and significantly regulated. Jak-1, -2, and -3 as well as Stat-1 and -3 were expressed at higher levels in patients with diabetic nephropathy than in control subjects. The estimated glomerular filtration rate significantly correlated with tubulointerstitial Jak-1, -2, and -3 and Stat-1 expression (R2 = 0.30–0.44). Immunohistochemistry found strong Jak-2 staining in glomerular and tubulointerstitial compartments in diabetic nephropathy compared with control subjects. In contrast, there was little or no increase in expression of Jak/Stat genes in the db/db C57BLKS or diabetic DBA/2J mice. CONCLUSIONS—These data suggest a direct relationship between tubulointerstitial Jak/Stat expression and progression of kidney failure in patients with type 2 diabetic nephropathy and distinguish progressive human diabetic nephropathy from nonprogressive murine diabetic nephropathy.


Journal of The American Society of Nephrology | 2006

Podocyte-specific deletion of integrin-linked kinase results in severe glomerular basement membrane alterations and progressive glomerulosclerosis.

Chiraz El-Aouni; Nadja Herbach; Simone M. Blattner; Anna Henger; Maria Pia Rastaldi; George Jarad; Jeffrey H. Miner; Marcus J. Moeller; René St-Arnaud; Shoukat Dedhar; Lawrence B. Holzman; Ruediger Wanke; Matthias Kretzler

Alterations in glomerular podocyte cell-cell and cell-matrix contacts are key events in progressive glomerular failure. Integrin-linked kinase (ILK) has been implicated in podocyte cell-matrix interaction and is induced in proteinuria. For evaluation of ILK function in vivo, mice with a Cre-mediated podocyte-specific ILK inactivation were generated. These mice seemed normal at birth but developed progressive focal segmental glomerulosclerosis and died in terminal renal failure. The first ultrastructural lesions that are seen at onset of albuminuria are glomerular basement membrane (GBM) alterations with a significant increase in true harmonic mean GBM thickness. Podocyte foot process effacement and loss of slit diaphragm followed with progression to unselective proteinuria. No significant reduction of slit membrane molecules (podocin and nephrin), key GBM components (fibronectin, laminins, and collagen IV isoforms), or podocyte integrins could be observed at onset of proteinuria. However, alpha3-integrins were relocalized into a granular pattern along the GBM, consistent with altered integrin-mediated matrix assembly in ILK-deficient podocytes. As the increased GBM thickness precedes structural podocyte lesions and key components of the GBM were expressed at comparable levels to controls, these data suggest an essential role of ILK for the close interconnection of GBM structure and podocyte function.


Journal of The American Society of Nephrology | 2008

The Death Ligand TRAIL in Diabetic Nephropathy

Corina Lorz; Alberto Benito-Martin; Anissa Boucherot; Alvaro C. Ucero; Maria Pia Rastaldi; Anna Henger; Silvia Armelloni; Beatriz Santamaría; Céline C. Berthier; Matthias Kretzler; Jesús Egido; Alberto Ortiz

Apoptotic cell death contributes to diabetic nephropathy (DN), but its role is not well understood. The tubulointerstitium from DN biopsy specimens was microdissected, and expression profiles of genes related to apoptosis were analyzed. A total of 112 (25%) of 455 cell death-related genes were found to be significantly differentially regulated. Among those that showed the greatest changes in regulation were two death receptors, OPG (the gene encoding osteoprotegerin) and Fas, and the death ligand TRAIL. Glomerular and proximal tubular TRAIL expression, assessed by immunohistochemistry, was higher in DN kidneys than controls and was associated with clinical and histologic severity of disease. In vitro, proinflammatory cytokines but not glucose alone regulated TRAIL expression in the human proximal tubular cell line HK-2. TRAIL induced tubular cell apoptosis in a dosage-dependant manner, an effect that was more marked in the presence of high levels of glucose and proinflammatory cytokines. TRAIL also activated NF-kappaB, and inhibition of NF-kappaB sensitized cells to TRAIL-induced apoptosis. It is proposed that TRAIL-induced cell death could play an important role in the progression of human DN.


Journal of The American Society of Nephrology | 2005

Delayed Chemokine Receptor 1 Blockade Prolongs Survival in Collagen 4A3–Deficient Mice with Alport Disease

Volha Ninichuk; Oliver Gross; Christoph A. Reichel; Andrej Khandoga; Rahul D. Pawar; Raluca Ciubar; Stephan Segerer; Emilia Belemezova; Ewa Radomska; Bruno Luckow; Guillermo Pérez de Lema; Philip M. Murphy; Ji-Liang Gao; Anna Henger; Matthias Kretzler; Richard Horuk; Manfred Weber; Fritz Krombach; Detlef Schlöndorff; Hans-Joachim Anders

Human Alport disease is caused by a lack of the alpha3-, 4-, or 5-chain of type IV collagen (COL4A). Affected humans and COL4A3-deficient mice develop glomerulosclerosis and progressive renal fibrosis in the presence of interstitial macrophages, but their contribution to disease progression is under debate. This question was addressed by treating COL4A3-deficient mice with BX471, an antagonist of chemokine receptor 1 (CCR1) that is known to block interstitial leukocyte recruitment. Treatment with BX471 from weeks 6 to 10 of life improved survival of COL4A3-deficient mice, associated with less interstitial macrophages, apoptotic tubular epithelial cells, tubular atrophy, interstitial fibrosis, and less globally sclerotic glomeruli. BX471 reduced total renal Cll5 mRNA expression by reducing the number of interstitial CCL5-positive cells in inflammatory cell infiltrates. Intravital microscopy of the cremaster muscle in male mice identified that BX471 or lack of CCR1 impaired leukocyte adhesion to activated vascular endothelium and transendothelial leukocyte migration, whereas leukocyte rolling and interstitial migration were not affected. Furthermore, in activated murine macrophages, BX471 completely blocked CCL3-induced CCL5 production. Thus, CCR1-mediated recruitment and local activation of macrophages contribute to disease progression in COL4A3-deficient mice. These data identify CCR1 as a potential therapeutic target for Alport disease or other progressive nephropathies associated with interstitial macrophage infiltrates.


Kidney International | 2013

Divergent functions of the Rho GTPases Rac1 and Cdc42 in podocyte injury.

Simone M. Blattner; Jeffrey B. Hodgin; Masashi Nishio; Stephanie A. Wylie; Jharna Saha; Abdul Soofi; Courtenay Vining; Ann Randolph; Nadja Herbach; Ruediger Wanke; Kevin B. Atkins; Hee Gyung Kang; Anna Henger; Cord Brakebusch; Lawrence B. Holzman; Matthias Kretzler

Podocytes are highly specialized epithelial cells with complex actin cytoskeletal architecture crucial for maintenance of the glomerular filtration barrier. The mammalian Rho GTPases Rac1 and Cdc42 are molecular switches that control many cellular processes, but are best known for their roles in the regulation of actin cytoskeleton dynamics. Here we employed podocyte-specific Cre-lox technology and found that mice with deletion of Rac1 display normal podocyte morphology without glomerular dysfunction well into adulthood. Using the protamine sulfate model of acute podocyte injury, podocyte-specific deletion of Rac1 prevented foot process effacement. In a long-term model of chronic hypertensive glomerular damage, however, loss of Rac1 led to an exacerbation of albuminuria and glomerulosclerosis. In contrast, mice with podocyte-specific deletion of Cdc42 had severe proteinuria, podocyte foot process effacement, and glomerulosclerosis beginning as early as 10 days of age. In addition, slit diaphragm proteins nephrin and podocin were redistributed and cofilin was de-phosphorylated. Cdc42 is necessary for the maintenance of podocyte structure and function, but Rac1 is entirely dispensable in physiologic steady state. However, Rac1 has either beneficial or deleterious effects depending on the context of podocyte impairment. Thus, our study highlights the divergent roles of Rac1 and Cdc42 function in podocyte maintenance and injury.

Collaboration


Dive into the Anna Henger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Detlef Schlöndorff

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Maria Pia Rastaldi

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar

Hermann Josef Gröne

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Doran

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge