Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Holmström is active.

Publication


Featured researches published by Anna Holmström.


Nature Cell Biology | 2001

Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus

Jens Rietdorf; Aspasia Ploubidou; Inge Reckmann; Anna Holmström; Friedrich Frischknecht; Markus Zettl; Timo Zimmermann; Michael Way

Vaccinia virus, a close relative of the causative agent of smallpox, exploits actin polymerization to enhance its cell-to-cell spread. We show that actin-based motility of vaccinia is initiated only at the plasma membrane and remains associated with it. There must therefore be another form of cytoplasmic viral transport, from the cell centre, where the virus replicates, to the periphery. Video analysis reveals that GFP-labelled intracellular enveloped virus particles (IEVs) move from their perinuclear site of assembly to the plasma membrane on microtubules. We show that the viral membrane protein A36R, which is essential for actin-based motility of vaccinia, is also involved in microtubule-mediated movement of IEVs. We further show that conventional kinesin is recruited to IEVs via the light chain TPR repeats and is required for microtubule-based motility of the virus. Vaccinia thus sequentially exploits the microtubule and actin cytoskeletons to enhance its cell-to-cell spread.


Molecular Microbiology | 1995

Cell-surface-bound Yersinia translocate the protein tyrosine phosphatase YopH by a polarized mechanism into the target cell

Cathrine Persson; Roland Nordfelth; Anna Holmström; Sebastian Håkansson; Roland Rosqvist; Hans Wolf-Watz

YopH is translocated by cell‐surface‐bound bacteria through the plasma membrane to the cytosol of the HeLa cell. The transfer mechanism is contact dependent and polarizes the translocation to only occur at the contact zone between the bacterium and the target cell. More than 99% of the PTPase activity is associated with the HeLa cells. In contrast to the wild‐type strain, the yopBD mutant cannot deliver YopH to the cytosol. Instead YopH is deposited in localized areas in the proximity of cell‐associated bacteria. A yopN mutant secretes 40% of the total amount of YopH to the culture medium, suggesting a critical role of YopN in regulation of the polarized translocation. Evidence for a region in YopH important for its translocation through the plasma membrane of the target cell but not for secretion from the pathogen is provided.


Molecular Microbiology | 1999

The V-antigen of Yersinia is surface exposed before target cell contact and involved in virulence protein translocation

Jonas Pettersson; Anna Holmström; Jim Hill; S. E. C. Leary; Elisabet Frithz-Lindsten; Anne von Euler-Matell; Eva Carlsson; Richard W. Titball; Åke Forsberg; Hans Wolf-Watz

Type III‐mediated translocation of Yop effectors is an essential virulence mechanism of pathogenic YersiniaLcrV is the only protein secreted by the type III secretion system that induces protective immunity. LcrV also plays a significant role in the regulation of Yop expression and secretion. The role of LcrV in the virulence process has, however, remained elusive on account of its pleiotropic effects. Here, we show that anti‐LcrV antibodies can block the delivery of Yop effectors into the target cell cytosol. This argues strongly for a critical role of LcrV in the Yop translocation process. Additional evidence supporting this role was obtained by genetic analysis. LcrV was found to be present on the bacterial surface before the establishment of bacteria target cell contact. These findings suggest that LcrV serves an important role in the initiation of the translocation process and provides one possible explanation for the mechanism of LcrV‐induced protective immunity.


Molecular Microbiology | 1997

YopK of Yersinia pseudotuberculosis controls translocation of Yop effectors across the eukaryotic cell membrane.

Anna Holmström; Jonas Pettersson; Roland Rosqvist; Sebastian Håkansson; Farideh Tafazoli; Maria Fällman; Karl-Eric Magnusson; Hans Wolf-Watz; Åke Forsberg

Introduction of anti‐host factors into eukaryotic cells by extracellular bacteria is a strategy evolved by several Gram‐negative pathogens. In these pathogens, the transport of virulence proteins across the bacterial membranes is governed by closely related type III secretion systems. For pathogenic Yersinia, the protein transport across the eukaryotic cell membrane occurs by a polarized mechanism requiring two secreted proteins, YopB and YopD. YopB was recently shown to induce the formation of a pore in the eukaryotic cell membrane, and through this pore, translocation of Yop effectors is believed to occur (Håkansson et al., 1996b). We have previously shown that YopK of Yersinia pseudotuberculosis is required for the development of a systemic infection in mice. Here, we have analysed the role of YopK in the virulence process in more detail. A yopK‐mutant strain was found to induce a more rapid YopE‐mediated cytotoxic response in HeLa cells as well as in MDCK‐1 cells compared to the wild‐type strain. We found that this was the result of a cell‐contact‐dependent increase in translocation of YopE into HeLa cells. In contrast, overexpression of YopK resulted in impaired translocation. In addition, we found that YopK also influenced the YopB‐dependent lytic effect on sheep erythrocytes as well as on HeLa cells. A yopK‐mutant strain showed a higher lytic activity and the induced pore was larger compared to the corresponding wild‐type strain, whereas a strain overexpressing YopK reduced the lytic activity and the apparent pore size was smaller. The secreted YopK protein was found not to be translocated but, similar to YopB, localized to cell‐associated bacteria during infection of HeLa cells. Based on these results, we propose a model where YopK controls the translocation of Yop effectors into eukaryotic cells.


Molecular Microbiology | 2001

LcrV is a channel size‐determining component of the Yop effector translocon of Yersinia

Anna Holmström; Jan Olsson; Peter Cherepanov; Elke Maier; Roland Nordfelth; Jonas Pettersson; Roland Benz; Hans Wolf-Watz; Åke Forsberg

Delivery of Yop effector proteins by pathogenic Yersinia across the eukaryotic cell membrane requires LcrV, YopB and YopD. These proteins were also required for channel formation in infected erythrocytes and, using different osmolytes, the contact‐dependent haemolysis assay was used to study channel size. Channels associated with LcrV were around 3 nm, whereas the homologous PcrV protein of Pseudomonas aeruginosa induced channels of around 2 nm in diameter. In lipid bilayer membranes, purified LcrV and PcrV induced a stepwise conductance increase of 3 nS and 1 nS, respectively, in 1 M KCl. The regions important for channel size were localized to amino acids 127–195 of LcrV and to amino acids 106–173 of PcrV. The size of the channel correlated with the ability to translocate Yop effectors into host cells. We suggest that LcrV is a size‐determining structural component of the Yop translocon.


Molecular Microbiology | 1998

Functional conservation of the effector protein translocators PopB/YopB and PopD/YopD of Pseudomonas aeruginosa and Yersinia pseudotuberculosis

Elisabet Frithz-Lindsten; Anna Holmström; Lars Jacobsson; Mehnam Soltani; Jan Olsson; Roland Rosqvist; Åke Forsberg

Virulent Yersinia species cause systemic infections in rodents, and Y. pestis is highly pathogenic for humans. Pseudomonas aeruginosa, on the other hand, is an opportunistic pathogen, which normally infects only compromised individuals. Surprisingly, these pathogens both encode highly related contact‐dependent secretion systems for the targeting of toxins into eukaryotic cells. In Yersinia, YopB and YopD direct the translocation of the secreted Yop effectors across the target cell membrane. In this study, we have analysed the function of the YopB and YopD homologues, PopB and PopD, encoded by P. aeruginosa. Expression of the pcrGVHpopBD operon in defined translocation‐deficient mutants (yopB/yopD ) of Yersinia resulted in complete complementation of the cell contact‐dependent, YopE‐induced cytotoxicity of Y. pseudotuberculosis on HeLa cells. We demonstrated that the complementation fully restored the ability of Y. pseudotuberculosis to translocate the effector molecules YopE and YopH into the HeLa cells. Similar to YopB, PopB induced a lytic effect on infected erythrocytes. The lytic activity induced by PopB could be prevented if the erythrocytes were infected in the presence of sugars larger than 3 nm in diameter, indicating that PopB induced a pore of similar size compared with that induced by YopB. Our findings show that the contact‐dependent toxin‐targeting mechanisms of Y. pseudotuberculosis and P. aeruginosa are conserved at the molecular level and that the translocator proteins are functionally interchangeable. Based on these similarities, we suggest that the translocation of toxins such as ExoS, ExoT and ExoU by P. aeruginosa across the eukaryotic cell membrane occurs via a pore induced by PopB.


Infection and Immunity | 2000

Apically Exposed, Tight Junction-Associated β1-Integrins Allow Binding and YopE-Mediated Perturbation of Epithelial Barriers by Wild-Type Yersinia Bacteria

Farideh Tafazoli; Anna Holmström; Åke Forsberg; Karl-Eric Magnusson

ABSTRACT Using polarized epithelial cells, primarily MDCK-1, we assessed the mode of binding and effects on epithelial cell structure and permeability of Yersinia pseudotuberculosis yadA-deficient mutants. Initially, all bacteria except the invasin-deficient (inv) mutant adhered apically to the tight junction areas. These contact points of adjacent cells displayed β1-integrins together with tight junction-associated ZO-1 and occludin proteins. Indeed, β1-integrin expression was maximal in the tight junction area and then gradually decreased along the basolateral membranes. Wild-type bacteria also opened gradually the tight junction to paracellular permeation of different-sized markers, viz., 20-, 40-, and 70-kDa dextrans and 45-kDa ovalbumin, as well as to their own translocation between adjacent cells in intimate contact with β1-integrins. The effects on the epithelial cells and their barrier properties could primarily be attributed to expression of the Yersinia outer membrane protein YopE, as the yopE mutant bound but caused no cytotoxicity. Moreover, the apical structure of filamentous actin (F-actin) was disturbed and tight junction-associated proteins (ZO-1 and occludin) were dispersed along the basolateral membranes. It is concluded that the Yersinia bacteria attach to β1-integrins at tight junctions. Via this localized injection of YopE, they perturb the F-actin structure and distribution of proteins forming and regulating tight junctions. Thereby they promote paracellular translocation of bacteria and soluble compounds.


Vaccine | 2002

PCR-generated linear DNA fragments utilized as a hantavirus DNA vaccine.

Patrik Johansson; Therese Lindgren; Marlene Lundström; Anna Holmström; Fredrik Elgh; Göran Bucht

The field of DNA vaccines has grown rapidly, and since most such vaccines involve the inoculation of large circular DNA molecules previously propagated in bacteria, several inconveniences (e.g. the presence of antibiotic resistance genes, impurities from bacterial cultures or inefficient uptake of the large and bulky plasmid DNA molecules to the nucleus) are debated. In this study, we have explored the possibility of using smaller and more flexible PCR-generated linear DNA fragments instead. Phosphorothioate (PTO)-modified primers were used successfully to protect the PCR-generated DNA fragments from exonuclease degradation, and by using a nuclear localization signal-peptide to target the linear DNA to the nucleus the immune response against the encoded antigen was further improved. This approach was tested in cell culture using a sensitive reporter system and in vivo with DNA encoding the amino-terminus of the Puumala hantavirus nucleocapsid protein. Our results indicate that linear DNA fragments have a great potential as a genetic vaccine and phosphorothioate modification in combination with a nuclear localization signal peptide increase the stability and targets the linear DNA molecules to the nucleus resulting in an improved biological response examined both in vitro and in vivo.


Medicine, Conflict and Survival | 2012

Lessons learned from implementing education on dual-use in Austria, Italy, Pakistan and Sweden

James Revill; M. Daniela Candia Carnevali; Åke Forsberg; Anna Holmström; Johannes Rath; Zabta Khan Shinwari; Giulio Maria Mancini

This paper provides insights into the achievements and challenges of implementing education on dual-use in four countries: Austria, Italy, Pakistan and Sweden. It draws attention to the different institutional mechanisms through which dual-use education may be introduced into academic curricula and some of the difficulties encountered in this process. It concludes that there is no ‘one size fits all’ approach to the implementation of dual-use education. Rather, initiatives must be tailored to suit the teaching traditions, geographical and historical context in which they are being delivered. However, a number of common principles and themes can be derived from all four cases. All these courses bring together a number of different topics that place ‘dual-use’ in the broader context of biosafety, biosecurity, ethics, law and the environment. The case studies suggest that success in this area depends largely on the leadership and commitment of individuals directly involved in teaching, who are active within the scientific community.


Virus Genes | 2006

Regions of importance for interaction of puumala virus nucleocapsid subunits

Lena Lindgren; Marie Lindkvist; Anna K. Överby; Clas Ahlm; Göran Bucht; Anna Holmström

Puumala virus (PUUV) is a hantavirus that causes a mild form of hemorrhagic fever with renal syndrome in northern and central Europe, and in large parts of Russia. The nucleocapsid (N) protein encoded by hantaviruses plays an important role in the life-cycle of these viruses, and one important function for the N-protein is to oligomerize, surround and protect the viral RNAs. We have identified amino- and carboxy-terminal regions involved in PUUV N–N interactions, which comprise amino acids 100–120 and 330–405. Our findings strengthen the hypothesis that the amino-terminus of the N-protein of hantaviruses holds a more regulatory function regarding N–N interactions, while conserved residues in the carboxy-terminal region, F335 together with F336 and W392, in concert with Y388 and/or F400 seems to play a more critical role in the PUUV N–N formation. This study provides evidence that the amino-terminal regions involved in the N–N interaction of Puumala virus are similar to those reported for Seoul virus (SEOV) and to some extent Hantaan virus (HTNV), even though the identity between PUUV N and SEOV/HTNV N is markedly lower than between PUUV N and Tula virus (TULV) N or Sin Nombre virus (SNV) N.

Collaboration


Dive into the Anna Holmström's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Göran Bucht

Swedish Defence Research Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge