Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Jansen is active.

Publication


Featured researches published by Anna Jansen.


Brain | 2010

Clinical and Imaging Heterogeneity of Polymicrogyria: A Study of 328 Patients.

Richard J. Leventer; Anna Jansen; Daniela T. Pilz; Neil Stoodley; Carla Marini; François Dubeau; Jodie P. Malone; L. Anne Mitchell; Simone Mandelstam; Ingrid E. Scheffer; Samuel F. Berkovic; Frederick Andermann; Eva Andermann; Renzo Guerrini; William B. Dobyns

Polymicrogyria is one of the most common malformations of cortical development and is associated with a variety of clinical sequelae including epilepsy, intellectual disability, motor dysfunction and speech disturbance. It has heterogeneous clinical manifestations and imaging patterns, yet large cohort data defining the clinical and imaging spectrum and the relative frequencies of each subtype are lacking. The aims of this study were to determine the types and relative frequencies of different polymicrogyria patterns, define the spectrum of their clinical and imaging features and assess for clinical/imaging correlations. We studied the imaging features of 328 patients referred from six centres, with detailed clinical data available for 183 patients. The ascertainment base was wide, including referral from paediatricians, geneticists and neurologists. The main patterns of polymicrogyria were perisylvian (61%), generalized (13%), frontal (5%) and parasagittal parieto-occipital (3%), and in 11% there was associated periventricular grey matter heterotopia. Each of the above patterns was further divided into subtypes based on distinguishing imaging characteristics. The remaining 7% were comprised of a number of rare patterns, many not described previously. The most common clinical sequelae were epileptic seizures (78%), global developmental delay (70%), spasticity (51%) and microcephaly (50%). Many patients presented with neurological or developmental abnormalities prior to the onset of epilepsy. Patients with more extensive patterns of polymicrogyria presented at an earlier age and with more severe sequelae than those with restricted or unilateral forms. The median age at presentation for the entire cohort was 4 months with 38% presenting in either the antenatal or neonatal periods. There were no significant differences between the prevalence of epilepsy for each polymicrogyria pattern, however patients with generalized and bilateral forms had a lower age at seizure onset. There was significant skewing towards males with a ratio of 3:2. This study expands our understanding of the spectrum of clinical and imaging features of polymicrogyria. Progression from describing imaging patterns to defining anatomoclinical syndromes will improve the accuracy of prognostic counselling and will aid identification of the aetiologies of polymicrogyria, including genetic causes.


Journal of Medical Genetics | 2005

Genetics of the polymicrogyria syndromes.

Anna Jansen; Eva Andermann

Polymicrogyria is a relatively common malformation of cortical development, characterised by multiple small gyri with abnormal cortical lamination. The different forms of polymicrogyria encompass a wide range of clinical, aetiological, and histological findings. Advances in imaging have improved the diagnosis and classification of the condition. The molecular basis of polymicrogyria is beginning to be elucidated with the identification of a gene, GPR56, for bilateral frontoparietal polymicrogyria. Functional studies of the GPR56 gene product will yield insights not only into the causes of polymicrogyria but also into the mechanisms of normal cortical development and the regional patterning of the cerebral cortex. Based on imaging studies, several other region specific patterns of polymicrogyria have been identified, and there is increasing evidence that these may also have a significant genetic component to their aetiology. This paper reviews current knowledge of the different polymicrogyria syndromes, with discussion of clinical and imaging features, patterns of inheritance, currently mapped loci, candidate genes, chromosomal abnormalities, and implications for genetic counselling.


Neurology | 2005

Intrinsic epileptogenicity in polymicrogyric cortex suggested by EEG-fMRI BOLD responses

Eliane Kobayashi; Andrew P. Bagshaw; Anna Jansen; F. Andermann; Eva Andermann; Jean Gotman; François Dubeau

Polymicrogyria (PMG) is a widespread cortical malformation frequently associated with seizures and EEG spikes. Its epileptogenicity is poorly understood. Nine patients with simultaneous EEG and fMRI were studied to assess the blood oxygenation level-dependent response to spikes. Sixteen of 18 studies showed responses, with maximum activation involving the lesion in 61.5%, but often limited to a small fraction of that lesion, suggesting intrinsic epileptogenicity in small areas of the PMG cortex.


Human Mutation | 2013

Mutation Spectrum in RAB3GAP1, RAB3GAP2, and RAB18 and Genotype–Phenotype Correlations in Warburg Micro Syndrome and Martsolf Syndrome

Mark T. Handley; Deborah J. Morris-Rosendahl; Stephen Brown; Fiona Macdonald; Carol Hardy; Danai Bem; Sarah M. Carpanini; Guntram Borck; Loreto Martorell; Claudia Izzi; Francesca Faravelli; Patrizia Accorsi; Lorenzo Pinelli; Lina Basel-Vanagaite; Gabriela Peretz; Ghada M.H. Abdel-Salam; Maha S. Zaki; Anna Jansen; David Mowat; Ian A. Glass; Helen Stewart; Grazia M.S. Mancini; Damien Lederer; Tony Roscioli; Fabienne Giuliano; Astrid S. Plomp; Arndt Rolfs; John M. Graham; Eva Seemanova; Pilar Poo

Warburg Micro syndrome and Martsolf syndrome (MS) are heterogeneous autosomal‐recessive developmental disorders characterized by brain, eye, and endocrine abnormalities. Causative biallelic germline mutations have been identified in RAB3GAP1, RAB3GAP2, or RAB18, each of which encode proteins involved in membrane trafficking. This report provides an up to date overview of all known disease variants identified in 29 previously published families and 52 new families. One‐hundred and forty‐four Micro and nine Martsolf families were investigated, identifying mutations in RAB3GAP1 in 41% of cases, mutations in RAB3GAP2 in 7% of cases, and mutations in RAB18 in 5% of cases. These are listed in Leiden Open source Variation Databases, which was created by us for all three genes. Genotype–phenotype correlations for these genes have now established that the clinical phenotypes in Micro syndrome and MS represent a phenotypic continuum related to the nature and severity of the mutations present in the disease genes, with more deleterious mutations causing Micro syndrome and milder mutations causing MS. RAB18 has not yet been linked to the RAB3 pathways, but mutations in all three genes cause an indistinguishable phenotype, making it likely that there is some overlap. There is considerable genetic heterogeneity for these disorders and further gene identification will help delineate these pathways.


Neurology | 2011

TUBA1A mutations From isolated lissencephaly to familial polymicrogyria

Anna Jansen; Ann Oostra; Brigitte Desprechins; Y. De Vlaeminck; Helene Verhelst; Luc Régal; Patrick Verloo; Nele Bockaert; Kathelijn Keymolen; S Seneca; L. De Meirleir; W. Lissens

Background: Mutations in the TUBA1A gene have been reported in patients with lissencephaly and perisylvian pachygyria. Methods: Twenty-five patients with malformations of cortical development ranging from lissencephaly to polymicrogyria were screened for mutations in TUBA1A. Results: Two novel heterozygous missense mutations in TUBA1A were identified: c.629A>G (p.Tyr210Cys) occurring de novo in a boy with lissencephaly, and c.13A>C (p.Ile5Leu) affecting 2 sisters with polymicrogyria whose mother presented somatic mosaicism for the mutation. Conclusions: Mutations in TUBA1A have been described in patients with lissencephaly and pachygyria. We report a mutation in TUBA1A as a cause of polymicrogyria. So far, all mutations in TUBA1A have occurred de novo, resulting in isolated cases. This article describes familial recurrence of TUBA1A mutations due to somatic mosaicism in a parent. These findings broaden the phenotypic spectrum associated with TUBA1A mutations and have implications for genetic counseling.


Drugs | 2016

The Role of mTOR Inhibitors in the Treatment of Patients with Tuberous Sclerosis Complex: Evidence-based and Expert Opinions.

Paolo Curatolo; Marit Bjørnvold; Patricia E Dill; Jc Ferreira; Martha Feucht; Christoph Hertzberg; Anna Jansen; Sergiusz Jóźwiak; J. Christopher Kingswood; Katarzyna Kotulska; Alfons Macaya; Romina Moavero; Rima Nabbout; Bernard A. Zonnenberg

Tuberous sclerosis complex (TSC) is a genetic disorder arising from mutations in the TSC1 or TSC2 genes. The resulting over-activation of the mammalian target of rapamycin (mTOR) signalling pathway leaves patients with TSC susceptible to the growth of non-malignant tumours in multiple organs. Previously, surgery was the main therapeutic option for TSC. However, pharmacological therapy with mTOR inhibitors such as everolimus and sirolimus is now emerging as an alternate approach. Everolimus and sirolimus have already been shown to be effective in treating subependymal giant cell astrocytoma (SEGA) and renal angiomyolipoma (AML), and everolimus is currently being evaluated in treating TSC-related epilepsy. In November 2013 a group of European experts convened to discuss the current options and practical considerations for treating various manifestations of TSC. This article provides evidence-based recommendations for the treatment of SEGA, TSC-related epilepsy and renal AML, with a focus on where mTOR inhibitor therapy may be considered alongside other treatment options. Safety considerations regarding mTOR inhibitor therapy are also reviewed. With evidence of beneficial effects in neurological and non-neurological TSC manifestations, mTOR inhibitors may represent a systemic treatment for TSC.


Epilepsia | 2013

Reduction of seizure frequency after epilepsy surgery in a patient with STXBP1 encephalopathy and clinical description of six novel mutation carriers

Sarah Weckhuysen; Philip Holmgren; Rik Hendrickx; Anna Jansen; Danièle Hasaerts; Charlotte Dielman; Julitta de Bellescize; Nadia Boutry-Kryza; Gaetan Lesca; Sarah von Spiczak; Ingo Helbig; Deepak Gill; Simone C. Yendle; Rikke S. Møller; Laura L. Klitten; Christian Korff; Catherine Godfraind; Kenou Van Rijckevorsel; Helle Hjalgrim; Ingrid E. Scheffer; Arvid Suls

Mutations in STXBP1 have been identified in a subset of patients with early onset epileptic encephalopathy (EE), but the full phenotypic spectrum remains to be delineated. Therefore, we screened a cohort of 160 patients with an unexplained EE, including patients with early myoclonic encephalopathy (EME), Ohtahara syndrome, West syndrome, nonsyndromic EE with onset in the first year, and Lennox‐Gastaut syndrome (LGS). We found six de novo mutations in six patients presenting as Ohtahara syndrome (2/6, 33%), West syndrome (1/65, 2%), and nonsyndromic early onset EE (3/64, 5%). No mutations were found in LGS or EME. Only two of four mutation carriers with neonatal seizures had Ohtahara syndrome. Epileptic spasms were present in five of six patients. One patient with normal magnetic resonance imaging (MRI) but focal seizures underwent epilepsy surgery and seizure frequency dropped drastically. Neuropathology showed a focal cortical dysplasia type 1a. There is a need for additional neuropathologic studies to explore whether STXBP1 mutations can lead to structural brain abnormalities.


Acta neuropathologica communications | 2014

Polymicrogyria: pathology, fetal origins and mechanisms.

Waney Squier; Anna Jansen

Polymicrogyria (PMG) is a complex cortical malformation which has so far defied any mechanistic or genetic explanation. Adopting a broad definition of an abnormally folded or festooned cerebral cortical neuronal ribbon, this review addresses the literature on PMG and the mechanisms of its development, as derived from the neuropathological study of many cases of human PMG, a large proportion in fetal life. This reveals the several processes which appear to be involved in the early stages of formation of polymicrogyric cortex. The most consistent feature of developing PMG is disruption of the brain surface with pial defects, over-migration of cells, thickening and reduplication of the pial collagen layers and increased leptomeningeal vascularity. Evidence from animal models is consistent with our observations and supports the notion that disturbance in the formation of the leptomeninges or loss of their normal signalling functions are potent contributors to cortical malformation. Other mechanisms which may lead to PMG include premature folding of the neuronal band, abnormal fusion of adjacent gyri and laminar necrosis of the developing cortex. The observation of PMG in association with other and better understood forms of brain malformation, such as cobblestone cortex, suggests mechanistic pathways for some forms of PMG. The role of altered physical properties of the thickened leptomeninges in exerting mechanical constraints on the developing cortex is also considered.


Journal of Anatomy | 2010

Abnormal development of the human cerebral cortex.

Waney Squier; Anna Jansen

This review presents an overview of human cortical malformation based on the insights gained from examination of human fetal brains. Examination at early stages of fetal brain development allows the identification of the specific pathways which are disrupted in human cortical malformation. Detailed examination of human fetal brains in parallel with studies of genetics and animal models is leading to new concepts of cortical malformations. Here we review a range of human cortical malformations based on a simple classification according to the developmental process thought to be disrupted: neuroblast proliferation, undermigration, overmigration, cortical maturation and destructive lesions. A single case example of a dated intrauterine injury illustrates the spectrum of malformations which may result at a single period in development. The recommended methods of examination of human fetal brain are described together with some of their pitfalls. Detailed neuropathological observations indicate the need for caution in the classification of malformations; radiological findings and pathology of the mature brain do not reflect the specific disruptive pathways of cortical malformations. While many insults may lead to the same pattern of malformation, a single insult can lead to multiple patterns of malformation. Our detailed studies of the human fetal brain suggest that the interface between the meninges and the radial glial end feet may be an intriguing new focus of interest in understanding cortical development.


European Journal of Paediatric Neurology | 2016

Early onset epileptic encephalopathy or genetically determined encephalopathy with early onset epilepsy? Lessons learned from TSC

Paolo Curatolo; Eleonora Aronica; Anna Jansen; Floor E. Jansen; Katarzyna Kotulska; Lieven Lagae; Romina Moavero; Sergiusz Jozwiak

BACKGROUND In tuberous sclerosis complex (TSC) a relationship has been shown between early and refractory seizures and intellectual disability. However, it is uncertain whether epilepsy in TSC is simply a marker in infants who are destined to develop an encephalopathic process or if seizures play a causal role in developing an encephalopathy. METHODS This paper summarizes the key points discussed during a European TSC workshop held in Rome, and reviews the experimental and clinical evidence in support of the two theories. RESULTS/CONCLUSION There are many factors that influence the appearance of both early seizure onset and the encephalopathy resulting in neurodevelopmental deficits. Experimental studies show that as a consequence of the TSC genes mutation, mammalian target of Rapamycin (mTOR) overactivation determines an alteration in cellular morphology with cytomegalic neurons, altered synaptogenesis and an imbalance between excitation/inhibition, thus providing a likely neuroanatomical substrate for the early appearance of refractory seizures and for the encephalopathic process. At the clinical level, early signs of altered developmental trajectories are often unrecognized before 12 months of age. Evidence from experimental research shows that encephalopathy in TSC might have a genetic cause, and mTOR activation caused by TSC gene mutation can be directly responsible for the early appearance of seizures and encephalopathy.

Collaboration


Dive into the Anna Jansen's collaboration.

Top Co-Authors

Avatar

Paolo Curatolo

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Sergiusz Jozwiak

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar

Martha Feucht

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katrien Stouffs

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Rima Nabbout

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar

Ibrahim Tanyalcin

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Willy Lissens

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jc Ferreira

University of Strathclyde

View shared research outputs
Researchain Logo
Decentralizing Knowledge