Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna K. Wójtowicz is active.

Publication


Featured researches published by Anna K. Wójtowicz.


Neuroscience | 2013

The key involvement of estrogen receptor β and G-protein-coupled receptor 30 in the neuroprotective action of daidzein.

Małgorzata Kajta; Joanna Rzemieniec; Ewa Litwa; Władysław Lasoń; M. Lenartowicz; Wojciech Krzeptowski; Anna K. Wójtowicz

Phytoestrogens have received considerable attention because they provide an array of beneficial effects, such as neuroprotection. To better understand the molecular and functional link between phytoestrogens and classical as well as membrane estrogen receptors (ERs), we investigated the effect of daidzein on the glutamate-mediated apoptotic pathway. Our study demonstrated that daidzein (0.1-10μM) inhibited the pro-apoptotic and neurotoxic effects caused by glutamate treatment. Hippocampal, neocortical and cerebellar tissues responded to the inhibitory action of daidzein on glutamate-activated caspase-3 and lactate dehydrogenase (LDH) release in a similar manner. Biochemical data were supported at the cellular level by Hoechst 33342 and calcein AM staining. The sensitivity of neuronal cells to daidzein-mediated protection was most prominent in hippocampal cultures at an early stage of development 7th day in vitro. A selective estrogen receptor β (ERβ) antagonist, 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5,-a]pyrimidin-3-yl]phenol (PHTPP), and a selective G-protein-coupled receptor 30 (GPR30) antagonist, 3aS(∗),4R(∗),9bR(∗))-4-(6-Bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-3H-cyclopenta[c]quinoline (G15), reversed the daidzein-mediated inhibition of glutamate-induced loss of membrane mitochondrial potential, caspase-3 activity, and LDH release. A selective ERα antagonist, methyl-piperidino-pyrazole (MPP), did not influence any anti-apoptotic effect of daidzein. However, a high-affinity estrogen receptor antagonist, 7α,17β-[9-[(4,4,5,5,5-pentafluoropentyl)sulfinyl]nonyl]estra-1,3,5(10)-triene-3,17-diol (ICI) 182,780, and a selective GPR30 agonist, (±)-1-[(3aR(∗),4S(∗),9bS(∗))-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl]-ethanone (G1), intensified the protective action of daidzein against glutamate-induced loss of membrane mitochondrial potential and LDH release. In siRNA ERβ- and siRNA GPR30-transfected cells, daidzein did not inhibit the glutamate-induced effects. Twenty-four hour exposure to glutamate did not affect the cellular distribution of ERβ and GPR30, but caused greater than 100% increase in the levels of the receptors. Co-treatment with daidzein decreased the level of ERβ without significant changing of the GPR30 protein level. Here, we elucidated neuroprotective effects of daidzein at low micromolar concentrations and demonstrated that the phytoestrogens may exert their effects through novel extranuclear GPR30 and the classical transcriptionally acting ERβ. These studies uncover key roles of the ERβ and GPR30 intracellular signaling pathways in mediating the anti-apoptotic action of daidzein and may provide insight into new strategies to treat or prevent neural degeneration.


Pharmacological Reports | 2013

Impact of endocrine-disrupting chemicals on neural development and the onset of neurological disorders

Małgorzata Kajta; Anna K. Wójtowicz

Even though high doses of organic pollutants are toxic, relatively low concentrations have been reported to cause long-term alterations in functioning of individual organisms, populations and even next generations. Among these pollutants are dioxins, polychlorinated biphenyls, pesticides, brominated flame retardants, plasticizers (bisphenol A, nonylphenol, and phthalates) as well as personal care products and drugs. In addition to toxic effects, they are able to interfere with hormone receptors, hormone synthesis or hormone conversion. Because these chemicals alter hormone-dependent processes and disrupt functioning of the endocrine glands, they have been classified as endocrine-disrupting chemicals (EDCs). Because certain EDCs are able to alter neural transmission and the formation of neural networks, the term neural-disrupting chemicals has been introduced, thus implicating EDCs in the etiology of neurological disorders. Recently, public concern has been focused on the effects of EDCs on brain function, concomitantly with an increase in neuropsychiatric disorders, including autism, attention deficit and hyperactivity disorder as well as learning disabilities and aggressiveness. Several lines of evidence suggest that exposure to EDCs is associated with depression and could result in neural degeneration. EDCs act via several classes of receptors with the best documented mechanisms being reported for nuclear steroid and xenobiotic receptors. Low doses of EDCs have been postulated to cause incomplete methylation of specific gene regions in the young brain and to impair neural development and brain functions across generations. Efforts are needed to develop systematic epidemiological studies and to investigate the mechanisms of action of EDCs in order to fully understand their effects on wildlife and humans.


Reproductive Toxicology | 2012

The effect of triclosan on hormone secretion and viability of human choriocarcinoma JEG-3 cells.

Ewelina Honkisz; Dorota Zięba-Przybylska; Anna K. Wójtowicz

Triclosan is an antimicrobial agent frequently used in pharmaceuticals and personal care products. We analyzed triclosan for its action on placental secretion of progesterone, estradiol and human chorionic gonadotropin in vitro in the JEG-3 cells. We also investigated its action on cell viability, proliferation and apoptosis. The JEG-3 cells were cultured with increasing doses of triclosan (1×10(-9)-1×10(-4) M) for 24, 48 and 72 h. Triclosan was found to increase estradiol and progesterone secretion after short- and long-term exposure. The stimulatory effect was observed up to 10 μM after short- and long-term exposure to triclosan. In addition, triclosan caused an adverse effect on β-hCG secretion. The highest doses of triclosan (50 and 100 μM) showed a strong cytotoxic effect. Anti proliferative and pro-apoptotic effects were also observed. Overall, this study demonstrates that triclosan may indirectly disrupt steroidogenesis which may, in turn, affect placental development and consequently fetal growth.


Pharmacological Reports | 2016

TBBPA causes neurotoxic and the apoptotic responses in cultured mouse hippocampal neurons in vitro

Konrad A. Szychowski; Anna K. Wójtowicz

BACKGROUND Tetrabromobisphenol A (TBBPA) is a brominated flame retardant widely used in a variety of commercial and household products. TBBPA can become bioaccumulated in human body fluids, and also in different brain regions. The aim of the present study was to determine the viability and apoptosis of cultured mouse hippocampal neurons in vitro after exposure to TBBPA. Additionally, we examined the involvement of ROS generation in the effect of TBBPA. METHODS Primary hippocampal neuron cultures were prepared from Swiss mouse embryos on day 17/18 of gestation. The cultures were treated with TBBPA at concentrations ranging from 1nM to 100μM for 30min or 3, 6 or 24h. To study apoptosis, the activity of caspase-3 was measured, and apoptotic body formation was evaluated. To investigate the cytotoxic effect of TBBPA, the level of lactate dehydrogenase (LDH) was measured in the culture medium. RESULTS Our results demonstrated that TBBPA concentrations ranging from 100nM to 100μM caused caspase-3 activation and apoptotic body formation. The cytotoxic effects of TBBPA were observed at concentrations ranging from 50nM to 100μM. To detect intracellular ROS, the fluorogenic dye H2DCFDA was used. We did not observe any significant increase in the level of cellular ROS in cultured cells after TBBPA treatment. However, in a cell-free model, TBBPA at concentrations ranging from 10 to 100μM interacted with H2DCFDA and enhanced the fluorescence signal. CONCLUSION We suggest that the H2DCFDA assay cannot be used to measure TBBPA-stimulated cell-mediated ROS production.


Environmental Research | 2016

Triclosan activates aryl hydrocarbon receptor (AhR)-dependent apoptosis and affects Cyp1a1 and Cyp1b1 expression in mouse neocortical neurons.

Konrad A. Szychowski; Agnieszka Wnuk; Małgorzata Kajta; Anna K. Wójtowicz

Triclosan (TCS) is an antimicrobial agent that is used extensively in personal care and in sanitizing products, such as soaps, toothpastes, and hair products. A number of studies have revealed the presence of TCS in human tissues, such as fat, liver and brain, in addition to blood and breast milk. The aim of the present study was to investigate the impact of TCS on AhR and Cyp1a1/Cyp1b1 signaling in mouse neocortical neurons in primary cultures. In addition to the use of selective ligands and siRNAs, expression levels of mRNA and proteins as well as caspase-3 activity, reactive oxygen species (ROS) formation, and lactate dehydrogenase (LDH) release have been measured. We also studied the involvement of the AhR in TCS-induced LDH release and caspase-3 activation as well as the effect of TCS on ROS generation. Cultures of neocortical neurons were prepared from Swiss mouse embryos on day 15/16 of gestation. The cells were cultured in phenol red-free Neurobasal medium with B27 and glutamine, and the neurons were exposed to 1 and 10µM TCS. Our experiments showed that the expression of AhR and Cyp1a1 mRNA decreased in cells exposed to 10µM TCS for 3 or 6h. In the case of Cyp1b1, mRNA expression remained unchanged compared with the control group following 3h of exposure to TCS, but after 6h, the mRNA expression of Cyp1b1 was decreased. Our results confirmed that the AhR is involved in the TCS mechanism of action, and our data demonstrated that after the cells were transfected with AhR siRNA, the cytotoxic and pro-apoptotic properties of TCS were decreased. The decrease in Cyp1a1 mRNA and protein expression levels accompanied by a decrease in its activity. The stimulation of Cyp1a1 activity produced by the application of an AhR agonist (βNF) was attenuated by TCS, whereas the addition of AhR antagonist (αNF) reversed the inhibitory effects of TCS. In our experiments, TCS diminished Cyp1b1 mRNA and enhanced its protein expression. In case of Cyp1a1 we observed paradoxical effect of TCS action, which caused the decrease in activity and protein expression of Cyp1a1 and the increase in protein level of AhR. Therefore, we determined the effects of TCS on the production of ROS. Our results revealed that TCS increased the production of ROS and that this effect of TCS was reversed by 10µM N-acetyl-L-cysteine (NAC), the ROS scavenger. To confirm an involvement of ROS in TCS-induced neurotoxicity we measured AhR, Cyp1a1, and Cyp1b1 mRNA expression levels in cells co-treated with TCS and NAC. In the presence of NAC, TCS enhanced mRNA expression of the cytochromes and AhR at 3 and 6h, respectively. We postulate that TCS exhibits primary and secondary effects. The primary effects such as impairment of Cyp1a1 signaling are mediated by TCS-induced ROS production, whereas secondary effects of TCS are due to transcriptional activity of AhR and estrogenic properties of TCS.


Neuroscience | 2015

Triclosan induces Fas receptor-dependent apoptosis in mouse neocortical neurons in vitro.

Konrad A. Szychowski; A.M. Sitarz; Anna K. Wójtowicz

Triclosan (TCS) is a commonly used antimicrobial agent in personal care and sanitizing products, as well as in household items. Numerous studies have demonstrated the presence of TCS in various human tissues. Several studies have reported the accumulation of TCS in fish and human brain tissue. The aim of the present study was to investigate the effect of TCS on apoptosis in mouse neocortical neurons after 7 days of culture in vitro following 3, 6 and 24 h of exposure. To explore the mechanism underlying the effects of TCS in neurons, we studied the activation and protein expression of the Fas receptor (FasR) and caspase-8, caspase-9 and caspase-3, as well as DNA fragmentation in TCS-treated cells. Cultures of neocortical neurons were prepared from Swiss mouse embryos on day 15/16 of gestation. The cells were cultured in phenol red-free Neurobasal medium with B27 and glutamine. The cultures were treated with concentrations of TCS ranging from 1 nM to 100 μM for 3, 6 and 24 h. The level of lactate dehydrogenase (LDH) was measured in the culture medium to exclude the cytotoxic concentrations. The cytotoxic effects were only observed when the highest concentrations of TCS were used (50 and 100 μM). To study apoptosis, the activities of caspase-8, caspase-9 and caspase-3 were measured, and DNA fragmentation was evaluated. Our results are the first time to demonstrate that TCS can induce an apoptotic process in neocortical neurons in vitro. The data demonstrated that TCS caused caspase-3 activation, DNA fragmentation and apoptotic body formation. Non-cytotoxic concentrations of TCS activated the extrinsic apoptotic signaling pathway, which is dependent on FasR and caspase-8 activation. However, it is also possible that TCS may activate the intrinsic apoptotic pathway after long-term exposure. Therefore, further studies on the mechanism underlying the effects of TCS on the nervous system are needed.


Neurotoxicity Research | 2016

The Crucial Involvement of Retinoid X Receptors in DDE Neurotoxicity

Agnieszka Wnuk; Joanna Rzemieniec; Ewa Litwa; Władysław Lasoń; Wojciech Krzeptowski; Anna K. Wójtowicz; Małgorzata Kajta

Dichlorodiphenyldichloroethylene (DDE) is a primary environmental and metabolic degradation product of the pesticide dichlorodiphenyltrichloroethane (DDT). It is one of the most toxic compounds belonging to organochlorines. DDE has never been commercially produced; however, the parent pesticide DDT is still used in some developing countries for disease-vector control of malaria. DDT and DDE remain in the environment because these chemicals are resistant to degradation and bioaccumulate in the food chain. Little is known, however, about DDE toxicity during the early stages of neural development. The results of the present study demonstrate that DDE induced a caspase-3-dependent apoptosis and caused the global DNA hypomethylation in mouse embryonic neuronal cells. This study also provided evidence for DDE-isomer-non-specific alterations of retinoid X receptor α (RXRα)- and retinoid X receptor β (RXRβ)-mediated intracellular signaling, including changes in the levels of the receptor mRNAs and changes in the protein levels of the receptors. DDE-induced stimulation of RXRα and RXRβ was verified using selective antagonist and specific siRNAs. Co-localization of RXRα and RXRβ was demonstrated using confocal microscopy. The apoptotic action of DDE was supported at the cellular level through Hoechst 33342 and calcein AM staining experiments. In conclusion, the results of the present study demonstrated that the stimulation of RXRα- and RXRβ-mediated intracellular signaling plays an important role in the propagation of DDE-induced apoptosis during early stages of neural development.


Toxicology in Vitro | 2015

Modulation of estradiol synthesis and aromatase activity in human choriocarcinoma JEG-3 cells exposed to tetrabromobisphenol A

Ewelina Honkisz; Anna K. Wójtowicz

The goal of the present study was to investigate the impact of tetrabromobisphenol A (TBBPA) on human choriocarcinoma-derived placental JEG-3 cells in vitro. We determined the effect of this compound on estradiol secretion, aromatase protein expression and activity in vitro in the JEG-3 cell line. We assessed the ability of TBBPA to increase intracellular levels of cAMP as well as its effect on cell viability and proliferation. Our results indicated that TBBPA, at a wide range of concentrations (1×10(-8)-5×10(-5)M), significantly induced estradiol secretion by JEG-3 cells compared to that of controls after 24, 48 or 72 h of exposure. This effect was accompanied by an increase in the aromatase protein expression in JEG-3 cells treated with 100 nM and 10 μM of TBBPA for 24 h. Additionally, in our study, we confirmed that TBBPA-induced changes in aromatase protein expression were associated w ith the up-regulation of aromatase activity and cAMP levels. No tested doses of TBBPA inhibited JEG-3 cell proliferation, except for the highest dose of 100 μM, which had a toxic effect on cell viability at all time points. The present study clearly indicates that TBBPA alters JEG-3 cells estrogen synthesis due to its action on CYP19 protein expression and thus this compound may interfere with normal placental development during early pregnancy.


Postepy Higieny I Medycyny Doswiadczalnej | 2013

Składniki tworzyw sztucznych zaburzające funkcje układu nerwowego

Konrad A. Szychowski; Anna K. Wójtowicz

Development of the chemical industry leads to the development of new chemical compounds, which naturally do not exist in the environment. These chemicals are used to reduce flammability, increase plasticity, or improve solubility of other substances. Many of these compounds, which are components of plastic, the new generation of cosmetics, medical devices, food packaging and other everyday products, are easily released into the environment. Many studies have shown that a major lipophilicity characterizes substances such as phthalates, BPA, TBBPA and PCBs. This feature allows them to easily penetrate into living cells, accumulate in the tissues and the organs, and affect human and animal health. Due to the chemical structures, these compounds are able to mimic some endogenous hormones such as estradiol and to disrupt the hormone homeostasis. They can also easily pass the placental barrier and the blood-brain barrier. As numerous studies have shown, these chemicals disturb the proper functions of the nervous system from the earliest moments of life. It has been proven that these compounds affect neurogenesis as well as the synaptic transmission process. As a consequence, they interfere with the formation of the sex of the brain, as well as with the learning processes, memory and behavior. Additionally, the cytotoxic and pro-apoptotic effect may cause neurodegenerative diseases. This article presents the current state of knowledge about the effects of phthalates, BPA, TBBPA, and PCBs on the nervous system.


Environmental Science and Pollution Research | 2016

Tetrabromobisphenol A (TBBPA)-stimulated reactive oxygen species (ROS) production in cell-free model using the 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) assay-limitations of method.

Konrad A. Szychowski; Kamila Rybczyńska-Tkaczyk; Marcin L. Leja; Anna K. Wójtowicz; Jan Gmiński

Tetrabromobisphenol A (TBBPA) is a widely used brominated flame retardant, applied in a variety of commercial and household products, mainly electronic ones. Since the production of reactive oxygen species (ROS) is considered one of the principal cytotoxicity mechanisms, numerous studies undertake that aspect of TBBPA’s mechanism of action. The present study verifies if the fluorogenic substrate 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA) should be used to detect ROS production induced by TBBPA. To determine the ability of TBBPA alone to stimulate the conversion of H2DCFDA to its fluorescent product 2’,7’-dichlorofluorescein (DCF), we used a cell-free model. In the experiments we check different cultured media also in combination with free radical scavenger N-acetyl-l-cysteine (NAC). Additionally, experiments with stable free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH·) have been made. The presented data showed that TBBPA in all tested concentrations interacts with H2DCFDA in phosphate-buffered saline (PBS) buffer while in micromolar concentrations in the DMEM/F12 medium with and without serum. The addition of NAC inhibited the interaction of TBBPA with H2DCFDA. Experiments with DPPH· showed that, in the presence of NAC, TBBPA acts like a free radical. TBBPA has similar properties to free radical and is susceptible to free radical scavenging properties of NAC. Our results indicated that H2DCFDA assay cannot be used to evaluate cellular ROS production in TBBPA studies. The study connected with TBBPA-stimulated ROS production in cell culture models using the H2DCFDA assay should be revised using a different method. However, due to the free radical-like nature of TBBPA, it can be very difficult. Therefore, further investigation of the nature of TBBPA as a compound with similar properties to free radical is required.

Collaboration


Dive into the Anna K. Wójtowicz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Małgorzata Kajta

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Agnieszka Wnuk

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Joanna Rzemieniec

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ewa Litwa

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ewelina Honkisz

University of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irena Nalepa

Polish Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge