Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna-Karin Larsson-Callerfelt is active.

Publication


Featured researches published by Anna-Karin Larsson-Callerfelt.


Glycobiology | 2015

Versican in inflammation and tissue remodeling: The impact on lung disorders

Annika Andersson-Sjöland; Oskar Hallgren; Sara Rolandsson; Maria Weitoft; Emil Tykesson; Anna-Karin Larsson-Callerfelt; Kristina Rydell-Törmänen; Leif Bjermer; Anders Malmström; Jenny C Karlsson; Gunilla Westergren-Thorsson

Versican is a proteoglycan that has many different roles in tissue homeostasis and inflammation. The biochemical structure comprises four different types of the core protein with attached glycosaminoglycans (GAGs) that can be sulfated to various extents and has the capacity to regulate differentiation of different cell types, migration, cell adhesion, proliferation, tissue stabilization and inflammation. Versicans regulatory properties are of importance during both homeostasis and changes that lead to disease progression. The GAGs that are attached to the core protein are of the chondroitin sulfate/dermatan sulfate type and are known to be important in inflammation through interactions with cytokines and growth factors. For a more complex understanding of versican, it is of importance to study the tissue niche, where the wound healing process in both healthy and diseased conditions take place. In previous studies, our group has identified changes in the amount of the multifaceted versican in chronic lung disorders such as asthma, chronic obstructive pulmonary disease, and bronchiolitis obliterans syndrome, which could be a result of pathologic, transforming growth factor β driven, on-going remodeling processes. Reversely, the context of versican in its niche is of great importance since versican has been reported to have a beneficial role in other contexts, e.g. emphysema. Here we explore the vast mechanisms of versican in healthy lung and in lung disorders.


Pulmonary Pharmacology & Therapeutics | 2014

Pulmonary vascular changes in asthma and COPD.

Louise M. Harkness; Varsha Kanabar; Hari S. Sharma; Gunilla Westergren-Thorsson; Anna-Karin Larsson-Callerfelt

In chronic lung disorders such as in asthma and chronic obstructive pulmonary disease (COPD) there is increased bronchial angiogenesis and remodelling of pulmonary vessels culminating to altered bronchial and pulmonary circulation. The involvement of residential cells such as endothelial cells, smooth muscle cells and pulmonary fibroblasts, all appear to have a crucial role in the progression of vascular inflammation and remodelling. The regulatory abnormalities, growth factors and mediators implicated in the pulmonary vascular changes of asthma and COPD subjects and potential therapeutic targets have been described in this review.


American Journal of Physiology-cell Physiology | 2014

Induction of angiotensin converting enzyme after miR-143/145 deletion is critical for impaired smooth muscle contractility.

Diana Dahan; Mari Ekman; Anna-Karin Larsson-Callerfelt; Karolina M. Turczyńska; Thomas Boettger; Thomas Braun; Karl Swärd; Sebastian Albinsson

MicroRNAs have emerged as regulators of smooth muscle cell phenotype with a role in smooth muscle-related disease. Studies have shown that miR-143 and miR-145 are the most highly expressed microRNAs in smooth muscle cells, controlling differentiation and function. The effect of miR-143/145 knockout has been established in the vasculature but not in smooth muscle from other organs. Using knockout mice we found that maximal contraction induced by either depolarization or phosphatase inhibition was reduced in vascular and airway smooth muscle but maintained in the urinary bladder. Furthermore, a reduction of media thickness and reduced expression of differentiation markers was seen in the aorta but not in the bladder. Supporting the view that phenotype switching depends on a tissue-specific target of miR-143/145, we found induction of angiotensin-converting enzyme in the aorta but not in the bladder where angiotensin-converting enzyme was expressed at a low level. Chronic treatment with angiotensin type-1 receptor antagonist restored contractility in miR-143/145-deficient aorta while leaving bladder contractility unaffected. This shows that tissue-specific targets are critical for the effects of miR-143/145 on smooth muscle differentiation and that angiotensin converting enzyme is one such target.


Respiratory Research | 2013

Defective alterations in the collagen network to prostacyclin in COPD lung fibroblasts

Anna-Karin Larsson-Callerfelt; Oskar Hallgren; Annika Andersson-Sjöland; Lena Thiman; Johan Björklund; Josefine Kron; Kristian Nihlberg; Leif Bjermer; Claes-Göran Löfdahl; Gunilla Westergren-Thorsson

BackgroundProstacyclin analogs are potent vasodilators and possess anti-inflammatory properties. However, the effect of prostacyclin on extracellular matrix (ECM) in COPD is not well known. Collagen fibrils and proteoglycans are essential ECM components in the lung and fibroblasts are key players in regulating the homeostasis of ECM proteins. The aim was to study the synthesis of prostacyclin and its effect on fibroblast activity and ECM production, and in particular collagen I and the collagen-associated proteoglycans biglycan and decorin.MethodsParenchymal lung fibroblasts were isolated from lungs from COPD patients (GOLD stage IV) and from lungs and transbronchial biopsies from control subjects. The prostacyclin analog iloprost was used to study the effect of prostacyclin on ECM protein synthesis, migration, proliferation and contractile capacity of fibroblasts.ResultsTGF-β1 stimulation significantly increased prostacyclin synthesis in fibroblasts from COPD patients (p < 0.01), but showed no effect on fibroblasts from control subjects. Collagen I synthesis was decreased by iloprost in both control and COPD fibroblasts (p < 0.05). Conversely, iloprost significantly altered biglycan and decorin synthesis in control fibroblasts, but iloprost displayed no effect on these proteoglycans in COPD fibroblasts. Proliferation rate was reduced (p < 0.05) and contractile capacity was increased in COPD fibroblasts (p < 0.05) compared to control fibroblasts. Iloprost decreased proliferative rate in control fibroblasts (p < 0.05), whereas iloprost attenuated contraction capacity in both COPD (p < 0.01) and control fibroblasts (p < 0.05).ConclusionsIloprost reduced collagen I synthesis and fibroblast contractility but did not affect the collagen-associated proteoglycans or proliferation rate in fibroblasts from COPD patients. Enhanced prostacyclin production could lead to improper collagen network fibrillogenesis and a more emphysematous lung structure in severe COPD patients.


Physiological Reports | 2016

5-HT2B receptor antagonists attenuate myofibroblast differentiation and subsequent fibrotic responses in vitro and in vivo

Anna Löfdahl; Kristina Rydell-Törmänen; Catharina Müller; C. Martina Holst; Lena Thiman; Gunilla Ekström; Christina Wenglén; Anna-Karin Larsson-Callerfelt; Gunilla Westergren-Thorsson

Pulmonary fibrosis is characterized by excessive accumulation of connective tissue, along with activated extracellular matrix (ECM)‐producing cells, myofibroblasts. The pathological mechanisms are not well known, however serotonin (5‐HT) and 5‐HT class 2 (5‐HT2) receptors have been associated with fibrosis. The aim of the present study was to investigate the role of 5‐HT2B receptors in fibrosis, using small molecular 5‐HT2B receptor antagonists EXT5 and EXT9, with slightly different receptor affinity. Myofibroblast differentiation [production of alpha‐smooth muscle actin (α‐SMA)] and ECM synthesis were quantified in vitro, and the effects of the receptor antagonists were evaluated. Pulmonary fibrosis was also modeled in mice by subcutaneous bleomycin administrations (under light isoflurane anesthesia), and the effects of receptor antagonists on tissue density, collagen‐producing cells, myofibroblasts and decorin expression were investigated. In addition, cytokine expression was analyzed in serum. Lung fibroblasts displayed an increased α‐SMA (P < 0.05) and total proteoglycan production (P < 0.01) when cultured with TGF‐β1 together with 5‐HT, which were significantly reduced with both receptor antagonists. Following treatment with EXT5 or EXT9, tissue density, expression of decorin, number of collagen‐producing cells, and myofibroblasts were significantly decreased in vivo compared to bleomycin‐treated mice. Receptor antagonization also significantly reduced systemic levels of TNF‐α and IL‐1β, indicating a role in systemic inflammation. In conclusion, 5‐HT2B receptor antagonists have potential to prevent myofibroblast differentiation, in vitro and in vivo, with subsequent effect on matrix deposition. The attenuating effects of 5‐HT2B receptor antagonists on fibrotic tissue remodeling suggest these receptors as novel targets for the treatment of pulmonary fibrosis.


Respirology | 2018

VEGF synthesis is induced by prostacyclin and TGF-β in distal lung fibroblasts from COPD patients and control subjects: Implications for pulmonary vascular remodelling

Gunilla Westergren-Thorsson; Mariam Bagher; Annika Andersson-Sjöland; Lena Thiman; Claes-Göran Löfdahl; Oskar Hallgren; Leif Bjermer; Anna-Karin Larsson-Callerfelt

Involvement of pulmonary vascular remodelling is a characteristic sign in COPD. Vascular mediators such as vascular endothelial growth factor (VEGF) and prostacyclin may regulate fibroblast activity. The objective was to study the synthesis of VEGF and interactions with prostacyclin and transforming growth factor (TGF)‐β1 in lung fibroblasts from patients with COPD and healthy control subjects. To further explore the autocrine role of synthesized VEGF on fibroblast activity, studies were performed in human lung fibroblasts (HFL‐1).


Pulmonary Pharmacology & Therapeutics | 2015

iNOS affects matrix production in distal lung fibroblasts from patients with mild asthma.

Anna-Karin Larsson-Callerfelt; Maria Weitoft; Kristian Nihlberg; Leif Bjermer; Gunilla Westergren-Thorsson; Ellen Tufvesson

INTRODUCTION A high level of exhaled nitric oxide (NO) is a marker for inflammation in the airways of asthmatic subjects. However, little is known about how NO and inducible nitric oxides synthase (iNOS) activity may affect remodelling in the distal lung. We hypothesized that there is a link between iNOS and ongoing remodelling processes in the distal lung of mild asthmatics. METHODS Patients with mild asthma (n = 6) and healthy control subjects (n = 8) were included. Exhaled NO was measured at different flow rates and alveolar NO concentrations were calculated. For studies of remodelling processes in the distal lung, primary fibroblasts were grown from transbronchial biopsies and stimulated with unselective and selective NOS inhibitors or a NO donor. The mRNA expression of iNOS and synthesis of NO (indirectly as nitrite/nitrate) were measured and distal lung fibroblast synthesis of the extracellular matrix proteoglycans were analysed. RESULTS The distal lung fibroblasts expressed iNOS, and there was a tendency of higher expression in fibroblasts from patients with asthma. The selective iNOS inhibitor 1400 W inhibited iNOS expression and NO synthesis in fibroblasts from patients with asthma (p = 0.031). Treatment with 1400 W significantly increased synthesis of the proteoglycan versican (p = 0.018) in distal fibroblasts from patients with asthma whereas there were no effects in fibroblasts from control subjects. CONCLUSIONS Our data suggest that there is a link between iNOS and remodelling in the distal lung of subjects with mild asthma and that iNOS could have a modulatory role in pathological airway remodelling.


Scientific Reports | 2018

Pulmonary fibrosis in vivo displays increased p21 expression reduced by 5-HT 2B receptor antagonists in vitro – a potential pathway affecting proliferation

Anna Löfdahl; Kristina Rydell-Törmänen; Anna-Karin Larsson-Callerfelt; Christina Wenglén; Gunilla Westergren-Thorsson

Serotonin (5-hydroxytryptamine) has repeatedly been associated with the development of fibrotic disorders such as pulmonary fibrosis. By blocking the binding of 5-HT to 5-HT2B receptors with receptor antagonists, several pro-fibrotic mechanisms can be inhibited. Bleomycin-induced pulmonary fibrosis is a model used to evaluate pathological mechanisms and pharmacological interventions. Previously we have shown attenuated fibrosis in systemic bleomycin-treated mice following treatment with two 5-HT2B receptor antagonists (EXT5 and EXT9). Our aim is to further identify cellular effects and signaling pathways associated with the anti-fibrotic effects of EXT5/9. Gene expressions in lung tissues from systemic bleomycin-treated mice were examined, revealing significant increased expression of Cdkn1α (a gene coding for p21), particularly in distal regions of the lung. In vitro studies in human lung fibroblasts revealed increased levels of p21 (p = 0.0032) and pAkt (p = 0.12) following treatment with 5-HT (10 µM). The induction of p21 and pAkt appears to be regulated by 5-HT2B receptors, with diminished protein levels following EXT9-treatment (p21 p = 0.0024, pAkt p = 0.15). Additionally, 5-HT induced fibroblast proliferation, an event significantly reduced by EXT5 (10 µM) and EXT9 (10 µM). In conclusion, our results suggest that 5-HT2B receptor antagonism attenuates pulmonary fibrosis in part by anti-proliferative effects, associated with inhibited pAkt/p21 signaling pathway.


Scientific Reports | 2018

Quantifying extracellular matrix turnover in human lung scaffold cultures

Oskar Rosmark; Emma Åhrman; Catharina Müller; Linda Elowsson Rendin; Leif Eriksson; Anders Malmström; Oskar Hallgren; Anna-Karin Larsson-Callerfelt; Gunilla Westergren-Thorsson; Johan Malmström

Remodelling of the extracellular matrix is accomplished by altering the balance between matrix macromolecule production and degradation. However, it is not well understood how cells balance production of new matrix molecules and degradation of existing ones during tissue remodelling and regeneration. In this study, we used decellularized lung scaffolds repopulated with allogenic lung fibroblasts cultured with stable isotope labelled amino acids to quantify the balance between matrix production and degradation at a proteome-wide scale. Specific temporal dynamics of different matrisome proteins were found to correspond to the proliferative activity of the repopulating cells and the degree of extracellular deposition. The remodeling of the scaffold was characterized by an initial phase with cell proliferation and high production of cell adhesion proteins such as emilin-1 and fibronectin. Extended culture time resulted in increased levels of core matrisome proteins. In a comparison with monolayer cultures on plastic, culture in lung scaffolds lead to a pronounced accumulation of proteoglycans, such as versican and decorin, resulting in regeneration of an extracellular matrix with greater resemblance to native lung tissue compared to standard monolayer cultures. Collectively, the study presents a promising technique for increasing the understanding of cell- extracellular matrix interactions under healthy and diseased conditions.


Cell Communication and Signaling | 2018

Mast cells and mast cell tryptase enhance migration of human lung fibroblasts through protease-activated receptor 2

Mariam Bagher; Anna-Karin Larsson-Callerfelt; Oskar Rosmark; Oskar Hallgren; Leif Bjermer; Gunilla Westergren-Thorsson

BackgroundMast cells may activate fibroblasts and contribute to remodeling processes in the lung. However, the mechanism behind these actions needs to be further investigated. Fibroblasts are major regulators of on-going remodeling processes. Protease activated receptor 2 (PAR2) expressed by fibroblasts may be activated by serine proteases, such as the mast cell mediator tryptase. The objective in this study was to investigate the effects of mast cells and specifically mast cell tryptase on fibroblast migration and the role of PAR2 activation.MethodsHuman lung fibroblasts (HFL-1) were cultured together with human peripheral blood-derived mast cells or LAD2 mast cells and stimulated with either conditioned medium from LAD2 cells or tryptase. Analyses of immunological stimulation of mast cells by IgE/anti IgE in the co-culture system were also performed. The importance of PAR2 activation by mast cells and mast cell tryptase for the migratory effects of fibroblasts was investigated by pre-treatment with the PAR2 antagonist P2pal-18S. The expression of PAR2 was analyzed on fibroblasts and mast cells.ResultsThe migratory capacity of HFL-1 cells was enhanced by blood-derived mast cells (p < 0.02), LAD2 cells (p < 0.001), conditioned medium (p < 0.05) and tryptase (p < 0.006). P2pal-18S decreased the induced migration caused by mast cells (p < 0.001) and tryptase (p < 0.001) and the expression of PAR2 was verified in HFL-1 cells. Mast cells immunologically stimulated with IgE/Anti IgE had no further effects on fibroblast migration.ConclusionsMast cells and the mast cell mediator tryptase may have crucial roles in inducing lung fibroblast migration via PAR-2 activation, which may contribute to remodeling processes in chronic lung diseases.

Collaboration


Dive into the Anna-Karin Larsson-Callerfelt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge