Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna-Katerina Hadjantonakis is active.

Publication


Featured researches published by Anna-Katerina Hadjantonakis.


Mechanisms of Development | 1998

GENERATING GREEN FLUORESCENT MICE BY GERMLINE TRANSMISSION OF GREEN FLUORESCENT ES CELLS

Anna-Katerina Hadjantonakis; Marina Gertsenstein; Masahito Ikawa; Masaru Okabe; Andras Nagy

Green fluorescent protein (GFP) and its variants currently represent the only non-invasive markers available for labeling mammalian cells in culture or in a multicellular organism through transgenesis. To date this marker gene has been widely used in the study of many organisms, but as yet has not found large-scale application in mammals due to problems encountered with weak fluorescence and instability of the wild-type protein at higher temperatures. Recently, though, several mutants have been made in the wild-type (wt) GFP so as to improve its thermostability and fluorescence. EGFP (enhanced GFP) is one such wtGFP variant. As a first step in assessing the use of EGFP in ES cell-mediated strategies, we have established a mouse embryonic stem (ES) cell lines expressing EGFP, which can be propagated in culture, reintroduced into mice. or induced to differentiate in vitro, while still maintaining ubiquitous EGFP expression. From the results presented we can suggest that: 1) possible improvements in the efficiency of transgenic regimes requiring the germline transmission of ES cells by aggregation chimeras can be made by the preselection chimeric embryos at the blastocyst stage: (2) the expression of a noninvasive marker, driven by a promoter that is active during early postimplantation development, allows access to embryos during a window of embryonic development that has previously been difficult to investigate (3) the behavior of mutant ES cells can be followed with simple microscopic observation of chimeric embryos or adult animals comprising green fluorescent cells/tissues. and (4) intercrosses of F1 mice and subsequent generations of animals show that progeny can be genotyped by UV light, such that mice homozygous for the transgene can be distinguished from hemizygotes due to their increased fluorescence.


Neuron | 2008

Tbr2 Directs Conversion of Radial Glia into Basal Precursors and Guides Neuronal Amplification by Indirect Neurogenesis in the Developing Neocortex

Alessandro Sessa; Chai An Mao; Anna-Katerina Hadjantonakis; William H. Klein; Vania Broccoli

T-brain gene-2 (Tbr2) is specifically expressed in the intermediate (basal) progenitor cells (IPCs) of the developing cerebral cortex; however, its function in this biological context has so far been overlooked due to the early lethality of Tbr2 mutant embryos. Conditional ablation of Tbr2 in the developing forebrain resulted in the loss of IPCs and their differentiated progeny in mutant cortex. Intriguingly, early loss of IPCs led to a decrease in cortical surface expansion and thickness with a neuronal reduction observed in all cortical layers. These findings suggest that IPC progeny contribute to the correct morphogenesis of each cortical layer. Our observations were confirmed by tracing Tbr2+ IPC cell fate using Tbr2::GFP transgenic mice. Finally, we demonstrated that misexpression of Tbr2 is sufficient to induce IPC identity in ventricular radial glial cells (RGCs). Together, these findings identify Tbr2 as a critical factor for the specification of IPCs during corticogenesis.


Developmental Cell | 2008

The Endoderm of the Mouse Embryo Arises by Dynamic Widespread Intercalation of Embryonic and Extraembryonic Lineages

Gloria S. Kwon; Manuel Viotti; Anna-Katerina Hadjantonakis

The cell movements underlying the morphogenesis of the embryonic endoderm, the tissue that will give rise to the respiratory and digestive tracts, are complex and not well understood. Using live imaging combined with genetic labeling, we investigated the cell behaviors and fate of the visceral endoderm during gut endoderm formation in the mouse gastrula. Contrary to the prevailing view, our data reveal no mass displacement of visceral endoderm to extraembryonic regions concomitant with the emergence of epiblast-derived definitive endoderm. Instead, we observed dispersal of the visceral endoderm epithelium and extensive mixing between cells of visceral endoderm and epiblast origin. Visceral endoderm cells remained associated with the epiblast and were incorporated into the early gut tube. Our findings suggest that the segregation of extraembryonic and embryonic tissues within the mammalian embryo is not as strict as believed and that a lineage previously defined as exclusively extraembryonic contributes cells to the embryo.


BMC Biotechnology | 2002

Embryonic stem cells and mice expressing different GFP variants for multiple non-invasive reporter usage within a single animal

Anna-Katerina Hadjantonakis; Suzanne Macmaster; Andras Nagy

BackgroundNon-invasive autofluorescent reporters have revolutionized lineage labeling in an array of different organisms. In recent years green fluorescent protein (GFP) from the bioluminescent jellyfish Aequoria Victoria has gained popularity in mouse transgenic and gene targeting regimes [1]. It offers several advantages over conventional gene-based reporters, such as lacZ and alkaline phosphatase, in that its visualization does not require a chromogenic substrate and can be realized in vivo. We have previously demonstrated the utility and developmental neutrality of enhanced green fluorescent protein (EGFP) in embryonic stem (ES) cells and mice [2].ResultsIn this study we have used embryonic stem (ES) cell-mediated transgenesis to test the enhanced cyan fluorescent protein (ECFP) and enhanced yellow fluorescent protein (EYFP), two mutant and spectrally distinct color variants of wild type (wt) GFP. We have also tested DsRed1, the novel red fluorescent protein reporter recently cloned from the Discostoma coral by virtue of its homology to GFP. To this end, we have established lines of ES cells together with viable and fertile mice having widespread expression of either the ECFP or EYFP GFP-variant reporters. However, we were unable to generate equivalent DsRed1 lines, suggesting that DsRed1 is not developmentally neutral or that transgene expression cannot be sustained constitutively. Balanced (diploid <-> diploid) and polarized (tetraploid <-> diploid) chimeras comprising combinations of the ECFP and EYFP ES cells and/or embryos, demonstrate that populations of cells expressing each individual reporter can be distinguished within a single animal.ConclusionsGFP variant reporters are unique in allowing non-invasive multi-spectral visualization in live samples. The ECFP and EYFP-expressing transgenic ES cells and mice that we have generated provide sources of cells and tissues for combinatorial, double-tagged recombination experiments, chimeras or transplantations.


Current Biology | 1998

DISSECTING THE ROLE OF N-MYC IN DEVELOPMENT USING A SINGLE TARGETING VECTOR TO GENERATE A SERIES OF ALLELES

Andras Nagy; Cecilia B. Moens; Ivanyi E; Pawling J; Marina Gertsenstein; Anna-Katerina Hadjantonakis; Melinda Pirity; Janet Rossant

The N-myc proto-oncogene is expressed in many organs of the mouse embryo, suggesting that it has multiple functions. A null mutation leads to mid-gestation lethality [1-4], obscuring the later roles of the gene in organogenesis. We have generated a multi-purpose gene alteration by combining the potential for homologous and site-specific recombination in a single targeting vector, and using the selectable marker for neomycin-resistance, neo, to downregulate gene activity. This allowed us to create a series of alleles that led to different levels of N-myc expression. The phenotypes revealed a spectrum of developmental problems. The hypomorphic allele produced can be repaired in situ by Cre-recombinase-mediated DNA excision. We show here for the first time the use of a single targeting vector to generate an allelic series. This, and the possibility of subsequent lineage-specific or conditional allele repair in situ, represent new genome modification strategies that can be used to investigate multiple functions of a single gene.


Journal of Cell Science | 2005

Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo

Berenika Plusa; Stephen Frankenberg; Andrew D. Chalmers; Anna-Katerina Hadjantonakis; Catherine A. Moore; Nancy Papalopulu; Virginia E. Papaioannou; David M. Glover; Magdalena Zernicka-Goetz

Generation of inside cells that develop into inner cell mass (ICM) and outside cells that develop into trophectoderm is central to the development of the early mouse embryo. Critical to this decision is the development of cell polarity and the associated asymmetric (differentiative) divisions of the 8-cell-stage blastomeres. The underlying molecular mechanisms for these events are not understood. As the Par3/aPKC complex has a role in establishing cellular polarity and division orientation in other systems, we explored its potential function in the developing mouse embryo. We show that both Par3 and aPKC adopt a polarized localization from the 8-cell stage onwards and that manipulating their function re-directs cell positioning and consequently influences cell fate. Injection of dsRNA against Par3 or mRNA for a dominant negative form of aPKC into a random blastomere at the 4-cell stage directs progeny of the injected cell into the inside part of the embryo. This appears to result from both an increased frequency by which such cells undertake differentiative divisions and their decreased probability of retaining outside positions. Thus, the natural spatial allocation of blastomere progeny can be over-ridden by downregulation of Par3 or aPKC, leading to a deceased tendency for them to remain outside and so develop into trophectoderm. In addition, this experimental approach illustrates a powerful means of manipulating gene expression in a specific clonal population of cells in the preimplantation embryo.


BMC Biotechnology | 2004

Dynamic in vivo imaging and cell tracking using a histone fluorescent protein fusion in mice.

Anna-Katerina Hadjantonakis; Virginia E. Papaioannou

BackgroundAdvances in optical imaging modalities and the continued evolution of genetically-encoded fluorescent proteins are coming together to facilitate the study of cell behavior at high resolution in living organisms. As a result, imaging using autofluorescent protein reporters is gaining popularity in mouse transgenic and targeted mutagenesis applications.ResultsWe have used embryonic stem cell-mediated transgenesis to label cells at sub-cellular resolution in vivo, and to evaluate fusion of a human histone protein to green fluorescent protein for ubiquitous fluorescent labeling of nucleosomes in mice. To this end we have generated embryonic stem cells and a corresponding strain of mice that is viable and fertile and exhibits widespread chromatin-localized reporter expression. High levels of transgene expression are maintained in a constitutive manner. Viability and fertility of homozygous transgenic animals demonstrates that this reporter is developmentally neutral and does not interfere with mitosis or meiosis.ConclusionsUsing various optical imaging modalities including wide-field, spinning disc confocal, and laser scanning confocal and multiphoton excitation microscopy, we can identify cells in various stages of the cell cycle. We can identify cells in interphase, cells undergoing mitosis or cell death. We demonstrate that this histone fusion reporter allows the direct visualization of active chromatin in situ. Since this reporter segments three-dimensional space, it permits the visualization of individual cells within a population, and so facilitates tracking cell position over time. It is therefore attractive for use in multidimensional studies of in vivo cell behavior and cell fate.


Nature Reviews Genetics | 2003

TECHNICOLOUR TRANSGENICS: IMAGING TOOLS FOR FUNCTIONAL GENOMICS IN THE MOUSE

Anna-Katerina Hadjantonakis; Mary E. Dickinson; Scott E. Fraser; Virginia E. Papaioannou

Over the past decade, a battery of powerful tools that encompass forward and reverse genetic approaches have been developed to dissect the molecular and cellular processes that regulate development and disease. The advent of genetically-encoded fluorescent proteins that are expressed in wild type and mutant mice, together with advances in imaging technology, make it possible to study these biological processes in many dimensions. Importantly, these technologies allow direct visual access to complex events as they happen in their native environment, which provides greater insights into mammalian biology than ever before.


Nature | 2011

Crucial role for DNA ligase III in mitochondria but not in Xrcc1-dependent repair

Deniz Simsek; Amy M. Furda; Yankun Gao; Jérôme Artus; Erika Brunet; Anna-Katerina Hadjantonakis; Bennett Van Houten; Stewart Shuman; Peter J. McKinnon; Maria Jasin

Mammalian cells have three ATP-dependent DNA ligases, which are required for DNA replication and repair. Homologues of ligase I (Lig1) and ligase IV (Lig4) are ubiquitous in Eukarya, whereas ligase III (Lig3), which has nuclear and mitochondrial forms, appears to be restricted to vertebrates. Lig3 is implicated in various DNA repair pathways with its partner protein Xrcc1 (ref. 1). Deletion of Lig3 results in early embryonic lethality in mice, as well as apparent cellular lethality, which has precluded definitive characterization of Lig3 function. Here we used pre-emptive complementation to determine the viability requirement for Lig3 in mammalian cells and its requirement in DNA repair. Various forms of Lig3 were introduced stably into mouse embryonic stem (mES) cells containing a conditional allele of Lig3 that could be deleted with Cre recombinase. With this approach, we find that the mitochondrial, but not nuclear, Lig3 is required for cellular viability. Although the catalytic function of Lig3 is required, the zinc finger (ZnF) and BRCA1 carboxy (C)-terminal-related (BRCT) domains of Lig3 are not. Remarkably, the viability requirement for Lig3 can be circumvented by targeting Lig1 to the mitochondria or expressing Chlorella virus DNA ligase, the minimal eukaryal nick-sealing enzyme, or Escherichia coli LigA, an NAD+-dependent ligase. Lig3-null cells are not sensitive to several DNA-damaging agents that sensitize Xrcc1-deficient cells. Our results establish a role for Lig3 in mitochondria, but distinguish it from its interacting protein Xrcc1.


Nature Cell Biology | 2014

Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages

Yusuke Ohnishi; Wolfgang Huber; Akiko Tsumura; Minjung Kang; Panagiotis Xenopoulos; Kazuki Kurimoto; Andrzej K. Oleś; Marcos J. Araúzo-Bravo; Mitinori Saitou; Anna-Katerina Hadjantonakis; Takashi Hiiragi

It is now recognized that extensive expression heterogeneities among cells precede the emergence of lineages in the early mammalian embryo. To establish a map of pluripotent epiblast (EPI) versus primitive endoderm (PrE) lineage segregation within the inner cell mass (ICM) of the mouse blastocyst, we characterized the gene expression profiles of individual ICM cells. Clustering analysis of the transcriptomes of 66 cells demonstrated that initially they are non-distinguishable. Early in the segregation, lineage-specific marker expression exhibited no apparent correlation, and a hierarchical relationship was established only in the late blastocyst. Fgf4 exhibited a bimodal expression at the earliest stage analysed, and in its absence, the differentiation of PrE and EPI was halted, indicating that Fgf4 drives, and is required for, ICM lineage segregation. These data lead us to propose a model where stochastic cell-to-cell expression heterogeneity followed by signal reinforcement underlies ICM lineage segregation by antagonistically separating equivalent cells.

Collaboration


Dive into the Anna-Katerina Hadjantonakis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Néstor Saiz

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Virginia E. Papaioannou

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary E. Dickinson

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nadine Schrode

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge