Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Kloda is active.

Publication


Featured researches published by Anna Kloda.


Nature | 2002

Open channel structure of MscL and the gating mechanism of mechanosensitive channels

Eduardo Perozo; D. Marien Cortes; Pornthep Sompornpisut; Anna Kloda; Boris Martinac

Mechanosensitive channels act as membrane-embedded mechano-electrical switches, opening a large water-filled pore in response to lipid bilayer deformations. This process is critical to the response of living organisms to direct physical stimulation, such as in touch, hearing and osmoregulation. Here, we have determined the structural rearrangements that underlie these events in the large prokaryotic mechanosensitive channel (MscL) using electron paramagnetic resonance spectroscopy and site-directed spin labelling. MscL was trapped in both the open and in an intermediate closed state by modulating bilayer morphology. Transition to the intermediate state is characterized by small movements in the first transmembrane helix (TM1). Subsequent transitions to the open state are accompanied by massive rearrangements in both TM1 and TM2, as shown by large increases in probe dynamics, solvent accessibility and the elimination of all intersubunit spin–spin interactions. The open state is highly dynamic, supporting a water-filled pore of at least 25 Å, lined mostly by TM1. These structures suggest a plausible molecular mechanism of gating in mechanosensitive channels.


Progress in Biophysics & Molecular Biology | 2003

Evolutionary origins of mechanosensitive ion channels

Boris Martinac; Anna Kloda

According to the recent revision, the universal phylogenetic tree is composed of three domains: Eukarya (eukaryotes), Bacteria (eubacteria) and Archaea (archaebacteria). Mechanosensitive (MS) ion channels have been documented in cells belonging to all three domains suggesting their very early appearance during evolution of life on Earth. The channels show great diversity in conductance, selectivity and voltage dependence, while sharing the property of being gated by mechanical stimuli exerted on cell membranes. In prokaryotes, MS channels were first documented in Bacteria followed by their discovery in Archaea. The finding of MS channels in archaeal cells helped to recognize and establish the evolutionary relationship between bacterial and archaeal MS channels and to show that this relationship extends to eukaryotic Fungi (Schizosaccharomyces pombe) and Plants (Arabidopsis thaliana). Similar to their bacterial and archaeal homologues, MS channels in eukaryotic cell-walled Fungi and Plants may serve in protecting the cellular plasma membrane from excessive dilation and rupture that may occur during osmotic stress. This review summarizes briefly some of the recent developments in the MS channel research field that may ultimately lead to elucidation of the biophysical and evolutionary principles underlying the mechanosensory transduction in living cells.


Biophysical Journal | 2001

Molecular Identification of a Mechanosensitive Channel in Archaea

Anna Kloda; Boris Martinac

The TM1 domain of the large conductance mechanosensitive (MS) channel of Escherichia coli was used as a genetic probe to search the genomic database of the archaeon Methanoccoccus jannashii for MscL homologs. We report that the hypothetical protein MJ0170 of M. jannashii exhibited 38.5% sequence identity with the TM1 domain of Eco-MscL. Moreover, MJ0170 was found to be a conserved homolog of MscS, the second type of E. coli MS channel encoded by the yggB gene. Furthermore, we identified a cluster of charged residues KIKEE in the C-terminus of MJ0170 that strikingly resembled the charged C-terminal amino acid cluster present in Eco-MscL (RKKEE). We cloned and expressed MJ0170 in E. coli, which when reconstituted into liposomes or expressed in the cell membrane of giant E. coli spheroplasts, exhibited similar activity to the bacterial MS channels. Our study suggests that the M. jannashii MS channel and its homologs evolved as a result of gene duplication of the ancestral MscL-like molecule with the TM1 domain remaining the most conserved structural motif among prokaryotic MS channels.


Journal of Biological Chemistry | 1998

Mechanosensitive Ion Channels of the Archaeon Haloferax volcanii

Alexander C. Le Dain; Nathalie Saint; Anna Kloda; Alexandre Ghazi; Boris Martinac

Mechanosensitive (MS) ion channels have been documented in a variety of cells belonging to Eukarya andEubacteria. We report the novel finding of two types of MS ion channels in the cell membrane of the halophilic archaeonHaloferax volcanii, a member of the Archaeathat comprise the third phylogenetic domain. The two channels, MscA1 and MscA2, differed in their kinetic properties with MscA1 exhibiting more frequent open-closed transitions than MscA2. Both channels have large conductances that rectify between −40 mV and +40 mV where the conductance of MscA1 ranged from 380 to 680 picosiemens, whereas MscA2 ranged from 850 to 490 picosiemens. Both channels were blocked by submillimolar gadolinium. In addition, the channels of either membrane vesicles or detergent-solubilized membrane proteins remained functional upon reconstitution into artificial liposomes, a result that indicates that these channels are activated by mechanical force transmitted via the lipid bilayer alone. Subsequently a 37-kDa protein corresponding to the MscA1 channel activity was purified. With the possible functional similarity to bacterial MS channels, our finding of MS channels inArchaea emphasizes the ubiquity and importance of these channels in all domains of the evolutionary tree.


Archaea | 2002

Common evolutionary origins of mechanosensitive ion channels in Archaea, Bacteria and cell-walled Eukarya

Anna Kloda; Boris Martinac

The ubiquity of mechanosensitive (MS) channels triggered a search for their functional homologs in Archaea. Archaeal MS channels were found to share a common ancestral origin with bacterial MS channels of large and small conductance, and sequence homology with several proteins that most likely function as MS ion channels in prokaryotic and eukaryotic cell-walled organisms. Although bacterial and archaeal MS channels differ in conductive and mechanosensitive properties, they share similar gating mechanisms triggered by mechanical force transmitted via the lipid bilayer. In this review, we suggest that MS channels of Archaea can bridge the evolutionary gap between bacterial and eukaryotic MS channels, and that MS channels of Bacteria, Archaea and cell-walled Eukarya may serve similar physiological functions and may have evolved to protect the fragile cellular membranes in these organisms from excessive dilation and rupture upon osmotic challenge.


The EMBO Journal | 2001

Structural and functional differences between two homologous mechanosensitive channels of Methanococcus jannaschii

Anna Kloda; Boris Martinac

We report the molecular cloning and characterization of MscMJLR, a second type of mechanosensitive (MS) channel found in the archaeon Methanococcus jannaschii. MscMJLR is structurally very similar to MscMJ, the MS channel of M.jannaschii that was identified and cloned first by using the TM1 domain of Escherichia coli MscL as a genetic probe. Although it shares 44% amino acid sequence identity and similar cation selectivity with MscMJ, MscMJLR exhibits other major functional differences. The conductance of MscMJLR of ∼2 nS is approximately 7‐fold larger than the conductance of MscMJ and rectifies with voltage. The channel requires ∼18 kT for activation, which is three times the amount of energy required to activate MscMJ, but is comparable to the activation energy of Eco‐MscL. Our study indicates that a multiplicity of conductance‐wise and energetically well‐tuned MS channels in microbial cell membranes may provide for cell survival by the sequential opening of the channels upon challenge with different osmotic cues.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Liposome reconstitution and modulation of recombinant N-methyl-d-aspartate receptor channels by membrane stretch

Anna Kloda; Linda H.L. Lua; Rhonda Hall; David J. Adams; Boris Martinac

In this study, the heteromeric N-methyl-d-aspartate (NMDA) receptor channels composed of NR1a and NR2A subunits were expressed, purified, reconstituted into liposomes, and characterized by using the patch clamp technique. The protein exhibited the expected electrophysiological profile of activation by glutamate and glycine and internal Mg2+ blockade. We demonstrated that the mechanical energy transmitted to membrane-bound NMDA receptor channels can be exerted directly by tension developed in the lipid bilayer. Membrane stretch and application of arachidonic acid potentiated currents through NMDA receptor channels in the presence of intracellular Mg2+. The correlation of membrane tension induced by either mechanical or chemical stimuli with the physiological Mg2+ block of the channel suggests that the synaptic transmission can be altered if NMDA receptor complexes experience local changes in bilayer thickness caused by dynamic targeting to lipid microdomains, electrocompression, or chemical modification of the cell membranes. The ability to study gating properties of NMDA receptor channels in artificial bilayers should prove useful in further study of structure–function relationships and facilitate discoveries of new therapeutic agents for treatment of glutamate-mediated excitotoxicity or analgesic therapies.


Cell Biochemistry and Biophysics | 2001

Mechanosensitive Channels in Archaea

Anna Kloda; Boris Martinac

The ubiquity of mechanosensitive (MS) channels triggered a search for their functional homologues in Archaea, the third domain of the phylogenetic tree. Two types of MS channels have been identified in the cell membranes of Haloferax volcanii using the patch clamp technique. Recently MS channels were identified and cloned from two archaeal species occupying different environmental habitats. These studies demonstrate that archaeal MS channels share structural and functional homology with bacterial MS channels. The mechanical force transmitted via the lipid bilayer alone activates all to date known prokaryotic MS channels. This implies the existence of a common gating mechanism for bacterial as well as archaeal MS channels according to the bilayer model. Based on recent evidence that the bilayer model also applies to eukaryotic MS channels, mechanosensory transduction probably originated along with the appearance of the first life forms according to simple biophysical principles. In support of this hypothesis the phylogenetic analysis revealed that prokaryotic MS channels of large and small conductance originated from a common ancestral molecule resembling the bacterial MscL channel protein. Furthermore, bacterial and archael, MS channels share common structural motifs with eukaryotic channels of diverse function indicating the importance of identified structures to the gating mechanism of this family of channels. The comparative approach used throughout this review should contribute towards understanding of the evolution and molecular basis of mechanosensory transduction in general.


Cell Biochemistry and Biophysics | 2001

Mechanosensitive channel of Thermoplasma, the cell wall-less archaea: cloning and molecular characterization.

Anna Kloda; Boris Martinac

By using a functional approach of reconstituting detergent-solubilized membrane proteins into liposomes and following their function in patch-clamp experiments, we identified a novel mechanosensitive (MS) channel in the thermophilic cell wall-less archaeon Thermoplasma volcanium. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of the enriched protein fractions revealed a band of approx 15 kDa comparable to MscL, the bacterial MS channel of large conductance. 20 N-terminal residues determined by protein microsequencing, matched the sequence to an unknown open reading frame in the genome of a related species Thermoplasma acidophilum. The protein encoded by the T. acidophilum gene was cloned and expressed in Escherichia coli and reconstituted into liposomes. When examined for function, the reconstituted protein exhibited properties typical of an MS ion channel: 1) activation by negative pressure applied to the patch-clamp pipet, 2) blockage by gadolinium, and 3) activation by the anionic amphipath trinitrophenol. In analogy to the nomenclature used for bacterial MS channels, the MS channel of T. acidophilum was termed MscTA. Secondary structural analysis indicated that similar to MscL, the T. acidophilum MS protein may have two transmembrane domains, suggesting that MS channels of thermophilic Archaea belong to a family of structurally related MscL-like ion channels with two membrane-spanning regions. When the mscTA gene was expressed in the mscL− knockout strain and the MscTA protein reconstituted into liposomes, the gating of MscTA was charaterized by very brief openings of variable conductance. In contrast, when the mscTA gene was expressed in the wild-type mscL+ strain of E. coli, the gating properties of the channel resembled MscL. However, the channel had reduced conductance and differed from MscL in its kinetics and in the free energy of activation, suggesting that MscTA and MscL can form functional complexes and/or modulate each other activity. Similar to MscL, MscTA exhibited an increase in activity in liposomes made of phospholipids having shorter acyl chain, suggesting a role of hydrophobic mismatch in the function of prokaryotic MS channels.


Channels | 2007

Polymodal regulation of NMDA receptor channels

Anna Kloda; Boris Martinac; David J. Adams

Glutamate-activated N-methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels which mediate synaptic transmission, long-term potentiation, synaptic plasticity and neurodegeneration via conditional Ca2+ signalling. Recent crystallographic studies have focussed on solving the structural determinant of the ligand binding within the core region of NR1 and NR2 subunits. Future structural analysis will help to understand the mechanism of native channel activation and regulation during synaptic transmission. A number of NMDA receptor ligands have been identified which act as positive or negative modulators of receptor function. There is evidence that the lipid bilayer can further regulate the activity of the NMDA receptor channels. Modulators of NMDA receptor function offer the potential for the development of novel therapeutics to target neurological disorders associated with this family of glutamate ion channel receptors. Here, we review the recent literature concerning structural and functional properties, as well as the physiological and pathological roles of NMDA receptor channels.

Collaboration


Dive into the Anna Kloda's collaboration.

Top Co-Authors

Avatar

Boris Martinac

Victor Chang Cardiac Research Institute

View shared research outputs
Top Co-Authors

Avatar

Evgeny Petrov

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

D. Marien Cortes

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Joyce

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

James H. Steer

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Livia C. Hool

Victor Chang Cardiac Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge