Anna Konermann
University of Bonn
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anna Konermann.
Biochimica et Biophysica Acta | 2014
Wenjia Liu; Anna Konermann; Tao Guo; Andreas Jäger; Liqiang Zhang; Yan Jin
BACKGROUND Cellular plasticity and complex functional requirements of the periodontal ligament (PDL) assume a local stem cell (SC) niche to maintain tissue homeostasis and repair. Here, pathological alterations caused by inflammatory insults might impact the regenerative capacities of these cells. As bone homeostasis is fundamentally controlled by Wnt-mediated signals, it was the aim of this study to characterize the SC-like capacities of cells derived from PDL and to investigate their involvement in bone pathophysiology especially regarding the canonical Wnt pathway. METHODS PDLSCs were investigated for their SC characteristics via analysis of cell surface marker expression, colony forming unit efficiency, proliferation, osteogenic differentiation and adipogenic differentiation, and compared to bone marrow derived mesenchymal SCs (BMMSCs). To determine the impact of both inflammation and the canonical Wnt pathway on osteogenic differentiation, cells were challenged with TNF-α, maintained with or without Wnt3a or DKK-1 under osteogenic induction conditions and investigated for p-IκBα, p-NF-κB, p-Akt, β-catenin, p-GSK-3β, ALP and Runx2. RESULTS PDLSCs exhibit weaker adipogenic and osteogenic differentiation capacities compared to BMMSCs. TNF-α inhibited osteogenic differentiation of PDLSCs more than BMMSCs mainly through regulating canonical Wnt pathway. Blocking the canonical Wnt pathway by DKK-1 reconstituted osteogenic differentiation of PDLSCs under inflammatory conditions, whereas activation by Wnt3a increased osteogenic differentiation of BMMSCs. CONCLUSIONS Our results suggest a diverse regulation of the inhibitory effect of TNF-α in BMMSCs and PDLSCs via canonical Wnt pathway modulation. GENERAL SIGNIFICANCE These findings provide novel insights on PDLSC SC-like capacities and their involvement in bone pathophysiology under the impact of the canonical Wnt pathway.
Innate Immunity | 2012
Anna Konermann; Dirk Stabenow; Percy A. Knolle; Stefanie Ae Held; James Deschner; Andreas Jäger
Innate immunity is crucial for an effective host defense against pathogenic microorganisms in periodontal tissues. As periodontal ligament (PDL) cells synthesize immunomodulatory cytokines, the aim of this in vitro study was to investigate whether these cells can interact with innate immune cells. Resting and inflammatory primed (IL-1β, TNF-α, HMGB1) human PDL cells were co-cultured with human monocyte-derived dendritic cells or macrophages. Migration, phenotypic maturation and modulation of phagocytosis of Porphyromonas gingivalis by immune cells were investigated upon co-culture with PDL cells and/or their released soluble factors. PDL cells interacted with immune cells under both non-inflammatory and inflammatory conditions. Immune cell migration was significantly enhanced by co-culture with PDL cells, which also affected their phenotypic maturation both through cell-cell contact and through released soluble mediators. The dendritic cell maturation markers CD83 and CD86 were upregulated as much as both ‘alternatively activated’ M2 macrophage maturation markers CD23 and CD163. In contrast, the ‘classically activated’ M1 macrophage maturation marker CD64 was downregulated. Finally, PDL cells significantly enhanced the phagocytosis of Porphyromonas gingivalis by immune cells. Our experiments revealed that PDL cells are not only structural elements of the periodontium, but actively influence immune responses by interaction with innate immune cells.
Cellular Immunology | 2012
Anna Konermann; M. Beyer; James Deschner; Jean-Pierre Allam; Natalija Novak; Jochen Winter; S. Jepsen; Andreas Jäger
The objective of this in vitro study was to examine the immunomodulatory impact of human periodontal ligament (PDL) cells on the nature and magnitude of the leukocyte infiltrate in periodontal inflammation, particularly with regard to Th17 cells. PDL cells were challenged with pro-inflammatory cytokines (IL-1ß, IL-17A, and IFN-γ) and analyzed for the expression of cytokines involved in periodontal immunoinflammatory processes (IL-6, MIP-3 alpha, IL-23A, TGFß1, IDO, and CD274). In order to further investigate a direct involvement of PDL cells in leukocyte function, co-culture experiments were conducted. The expression of the immunomodulatory cytokines studied was significantly increased under pro-inflammatory conditions in PDL cells. Although PDL cells did not stimulate leukocyte proliferation or Th17 differentiation, these cells induced the recruitment of leukocytes. The results of our study suggest that PDL cells might be involved in chronic inflammatory mechanisms in periodontal tissues and thus in the transition to an adaptive immune response in periodontitis.
Journal of Oral Pathology & Medicine | 2012
Anna Konermann; James Deschner; Jean-Pierre Allam; Natalija Novak; Jochen Winter; S. L. Baader; S. Jepsen; Andreas Jäger
BACKGROUND Periodontal ligament (PDL) cells are the main cellular constituents of the periodontium, maintain the integrity of the connective tissue, and impact pathology in periodontitis. The aim of this study was to analyze whether PDL cells recognize foreign particles and participate in the immune response to periodontal pathogens. METHODS Expression of surface proteins characteristic of antigen-presenting cells (APCs) (major histocompatibility complex [MHC] class II, CD40, CD80, CD86) was analyzed in PDL cells after challenge with the cytokines interleukin (IL)-1β, IL-17A, and interferon-gamma (IFN-γ) or with heat-killed Aggregatibacter actinomycetemcomitans using real-time PCR and flow cytometry. Confocal laser scanning microscopy, transmitted light microscopy, flow cytometry, and time-lapse microscopy were applied to analyze their phagocytotic capacity of collagen (carboxylate-modified microspheres), non-periodontal (Escherichia coli) and periodontal (Aggregatibacter actinomycetemcomitans) pathogens. Furthermore, it was examined whether cytokine activation of PDL cells affects the phagocytosis of collagen or bacteria. RESULTS PDL cells upregulated MHC class II after cytokine stimulation on transcriptional level, whereas co-stimulatory molecules characteristic of professional APCs were not induced. Analyses on protein level revealed that MHC class II was not constitutively expressed in all PDL cell lines used. PDL cells phagocytosed both collagen and bacteria via acidic vesicles, suggesting the formation of phagosomes. Phagocytosis could be partially inhibited by inhibitors of phagocytosis, i.e., dynasore and wortmannin. Pre-incubation with cytokines did not further enhance the phagocytosis rate of collagen or bacteria. CONCLUSIONS These results suggest that PDL cells do not only represent bystanders in periodontal infections, but display non-professional APC characteristics, suggesting possible participation in immune reactions of the oral cavity.
Scientific Reports | 2015
Tao Guo; Liqiang Zhang; Anna Konermann; Hong Zhou; Fang Jin; Wenjia Liu
Bone homeostasis is maintained by the balance of osteoblasts (OBs) and osteoclasts (OCs). Increased activity of OCs not only contributes to pathological bone resorption, such as osteoporosis and periodontitis, but also is responsible for physiological conditions like orthodontic tooth movement (OTM). However, the detailed mechanism by which orthodontic force promotes the formation of OCs is still poorly understood. In this study, we confirmed that static force promoted the differentiation of human cord monocytes (HMNCs) into OCs depending on loading time and magnitude. Protein expression profiles among HMNCs, HMNCs subjected to static force and mature OCs were established via 2-DE and MALDI-TOF-MS analyses. Total respective protein spot numbers of 549 ± 13, 612 ± 19 and 634 ± 16 were detected in each of the gels by image analysis. The five proteins identified were plasminogen activator inhibitor 2 (PAI-2, Spot 1), peroxiredoxin-6 (PRD-6, Spot 3), manganese superoxide dismutase (SOD2, Spot 6), Rho GDP-dissociation inhibitor 2 (Rho-GDI2, Spot 11) and L-lactate dehydrogenase B chain (L-LDH, Spot 15). More importantly, we revealed that SOD2 was required to maintain monocyte differentiation into functional OCs and may become a potential target for regulating the efficiency of OTM in the future.
International Journal of Oral and Maxillofacial Surgery | 2014
Anna Konermann; M. Staubwasser; Cornelius Dirk; Ludger Keilig; Christoph Bourauel; Werner Götz; Andreas Jäger; Christoph Reichert
The aim of this study was to determine the material composition and cell-mediated remodelling of different calcium phosphate-based bone substitutes. Osteoclasts were cultivated on bone substitutes (Cerabone, Maxresorb, and NanoBone) for up to 5 days. Bafilomycin A1 addition served as the control. To determine cellular activity, the supernatant content of calcium and phosphate was measured by inductively coupled plasma optical emission spectrometry. Cells were visualized on the materials by scanning electron microscopy. Material composition and surface characteristics were assessed by energy-dispersive X-ray spectroscopy. Osteoclast-induced calcium and phosphate release was material-specific. Maxresorb exhibited the highest ion release to the medium (P = 0.034; calcium 40.25mg/l day 5, phosphate 102.08 mg/l day 5) and NanoBone the lowest (P = 0.021; calcium 8.43 mg/l day 5, phosphate 15.15 mg/l day 5); Cerabone was intermediate (P = 0.034; calcium 16.34 mg/l day 5, phosphate 30.6 mg/l day 5). All investigated materials showed unique resorption behaviours. The presented methodology provides a new perspective on the investigation of bone substitute biodegradation, maintaining the material-specific micro- and macrostructure.
Cellular Immunology | 2013
Anna Konermann; Jochen Winter; Natalija Novak; Jean-Pierre Allam; Andreas Jäger
Interleukin (IL-) 17A and IL-17F mediate immune responses by inducing both proinflammatory and regulatory mechanisms. Immunological processes are modulated by steroids, which also affect periodontal pathophysiology. It was the aim of this study to investigate the expression profile of IL-17A and IL-17F in periodontal tissues and to analyze the significance of testosterone and estradiol on IL-17 expression in periodontal cells. In vivo incidence of IL-17A and IL-17F was immunohistochemically quantified in human periodontal tissues. In vitro expression of IL-17A and IL-17F was analyzed in human gingival epithelial cells, gingival fibroblasts and periodontal ligament cells via qRT-PCR. Gene expression alterations of IL-17 were assessed following challenge with testosterone and 17β-estradiol under simulated inflammatory conditions (±IL-1β). Analyses proved IL-17 expression in periodontal hard and soft tissues and in resident cells, showing distinct patterns for the subtypes IL-17A and IL-17F. IL-17F was discriminatively regulated by testosterone and 17β-estradiol in resident periodontal cells.
Annals of Anatomy-anatomischer Anzeiger | 2013
Anna Konermann; Stefan Lossdörfer; Andreas Jäger; Y. Chen; Werner Götz
The insulin-like growth factor (IGF) system plays an important role in tissue development and presumably also governs pathophysiology of the periodontal ligament (PDL). It has been the aim of this study to elucidate the specific expression pattern of IGF2 and IGFBP6 in PDL cells and to determine whether PDL cells feature autoregulatory mechanisms upon exposure to these IGF components. Human PDL cells (n=6) were exposed to IGF2 (100 ng/ml), IGFBP6 (450 ng/ml, 675 ng/ml, 1125 ng/ml) or a combination of 100 ng/ml IGF2 and 675 ng/ml IGFBP6 for 1, 3 or 5d. qRT-PCR was run for IGF2, IGFBP6, Ki67, ALP, osteocalcin. Immunocytochemical quantification was performed for IGF2 and IGFBP6. Results showed a time-dependent increase in IGF2 and IGFBP6 gene expression, as opposed to a general decrease at the protein level. At the transcriptional and protein level, challenge with IGF2 and IGFBP6 dampened the expression of both molecules at all time points investigated. Only in the case of IGF2 did combined treatment with IGF2 and IGFBP6 contrarily increased protein expression in both nuclear and cytoplasmatic structures compared to the vehicle treated controls. Analyses of PDL cell proliferation and differentiation revealed Ki67 downregulation by IGF2 and IGFBP6 alone or in combination. Beyond this, the osteogenic differentiation potential of PDL cells was suppressed as ALP and osteocalcin expression was reduced. Our results indicate that IGF2 and IGFBP6 appear to govern various regulatory feedback mechanisms in PDL cells. Thus, the functional properties of these molecules in oral structures are presumably self-controlled under impact of different biological processes such as expression levels of these IGF components, cell proliferation and differentiation.
Journal of Oral Implantology | 2016
Anna Konermann; Werner Götz; Michael Le; Cornelius Dirk; Stefan Lossdörfer; Friedhelm Heinemann
Peri-implantitis (PI) is characterized by inflammation and bone resorption eventually leading to implant failure, but the characteristic pathologic determinants are undefined to date. This study aims to elucidate the parameters involved in PI pathogenesis, including intraoral implant retention time, extent of bone loss, smoking history, and identification of osteoimmunological markers for inflammation and bone loss. Peri-implant tissues (n = 21) displaying clinically diagnosed PI from patients with vertical bone loss ranging from 0-12 mm and implant function period between 1 and 60 months were evaluated by histochemistry and immunohistochemistry for TRAP, CD3, RANK, RANKL, OPG, and TNF-α. Statistical analyses were performed with the Welch test and correlation coefficients were calculated. Most bone resorption occurred during the first 12 months of implant function and correlated with the extent of inflammation, although histological signs of inflammation strongly varied between samples from minimal appearance of inflammatory cells to extended infiltrates. Implant function period and smoking history did not significantly affect the degree of inflammation. Higher RANK levels emerged in the first 12 months of implant function compared to longer retention times and were negatively correlated to the occurrence of RANKL. Additionally, histological signs of inflammation were about two-fold higher in specimens with bone resorption up from 5 mm compared to under 5 mm. CD3(+) cells were more prevalent in extensive inflammatory infiltrates and samples derived from smokers. Our analyses proved that PI-induced bone loss is differentially influenced by the parameters evaluated in this study, but a distinct interconnection between disease severity and implant retention time can be established.
Cellular Physiology and Biochemistry | 2014
Tao Guo; Wenjia Liu; Anna Konermann; Zexu Gu; Meng Cao; Yin Ding
Background: Muscle-derived satellite cells (MDSCs) express MHC molecules intimately related to muscle function, which is supposed to be affected by local estrogen (E2) levels. However, cellular targets and molecular mechanisms involved are poorly understood. Methods: Genioglossus (GG) muscle tissues and MDSCs were derived from SHAM, ovariectomized or ovariectomized and 17 β-estradiol injected rats (n=10 ⁄ group). ERα, ERβ, MHC expression and underlying regulatory mechanisms were investigated by RT-PCR, western blot and immunohistochemistry, inter alia upon selective antagonist exposure and Si-RNA transfection. MDSC viability and cell cycle were examined by MTT and flow cytometry. Results: E2 upregulated MHC-I and downregulated MHC-IIb expression in MDSCs. E2 mediated effects on these molecules were inhibited by ERα-selective antagonist MPP and si-ERα, whereas they persisted upon exposure to ERβ-selective antagonist PHTPP. ERα was significantly higher expressed in muscle tissues compared to ERβ. ER positive stainings were fewer in the ovariectomized than in the SHAM group. Injection of E2 only increased the positive staining of ERα, but not of ERβ. Conclusion: Results suggest that E2 regulates MHC expression mainly through an ERα-mediated pathway with opposing effects on MHC-I and MHC-IIb. Thus, different hormonal processes that impact muscular pathophysiology presumably govern the functional properties of these molecules.