Anna Korzekwa
Polish Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anna Korzekwa.
Biology of Reproduction | 2004
Kiyoshi Okuda; Anna Korzekwa; Masami Shibaya; Shuko Murakami; Ryo Nishimura; Miki Tsubouchi; Izabela Woclawek-Potocka; Dariusz J. Skarzynski
Abstract Progesterone is suggested to be a suppressor of apoptosis in bovine luteal cells. Fas antigen (Fas) is a cell surface receptor that triggers apoptosis in sensitive cells. Furthermore, apoptosis is known to be controlled by the bcl-2 gene/protein family and caspases. This study was undertaken to determine whether intraluteal progesterone (P4) is involved in Fas L–mediated luteal cell death in the bovine corpus luteum (CL) in vitro. Moreover, we studied whether an antagonist of P4 influences gene expression of the bcl-2 family and caspase-3 and the activity of caspase-3 in the bovine CL. Luteal cells obtained from the cows in the midluteal phase of the estrous cycle (Days 8–12 of the cycle) were exposed to a specific P4 antagonist (onapristone [OP], 10−4 M) with or without 100 ng/ml Fas L. Although Fas L alone did not show a cytotoxic effect, treatment of the cells with OP alone or in combination with Fas L resulted in killing of 30% and 45% of the cells, respectively (P < 0.05). DNA fragmentation was observed in the cells treated with Fas L in the presence of OP. The inhibition of P4 action by OP increased the expression of Fas mRNA (P < 0.01); however, it did not affect bax or bcl-2 mRNA expression (P > 0.05). Moreover, OP stimulated expression of caspase-3 mRNA (P < 0.01). The overall results indirectly show that intraluteal P4 suppresses apoptosis in bovine luteal cells through the inhibition of Fas and caspase-3 mRNA expression and inhibition of caspase-3 activation.
Biology of Reproduction | 2003
Dariusz J. Skarzynski; Mamadou M. Bah; Katarzyna M. Deptula; Izabela Woclawek-Potocka; Anna Korzekwa; Masami Shibaya; Wojciech Pilawski; Kiyoshi Okuda
Abstract We have suggested in a previous in vitro study that tumor necrosis factor-α (TNFα) plays a role in the initiation of luteolysis in cattle. The aim of the present study was to examine the influence of different doses of TNFα on the estrous cycle in cattle by observing the standing behavior and measuring peripheral concentrations of progesterone (P4) during the estrous cycle. Moreover, we evaluated the secretion of P4, oxytocin (OT), nitric oxide (NO), and luteolytic (prostaglandin F2α [PGF2α] and leukotriene C4 [LTC4]) and luteotropic (PGE2) metabolites of arachidonic acid in peripheral blood plasma as parameters of TNFα actions. Mature Holstein/Polish black and white heifers (n = 36) were treated on Day 14 of the estrous cycle (Day 0 = estrus) by infusion into the aorta abdominalis of saline (n = 8), an analogue of PGF2α (cloprostenol, 100 μg; n = 3) or saline with TNFα at doses of 0.1 (n = 3), 1 (n = 8), 10 (n = 8), 25 (n = 3), or 50 μg (n = 3) per animal. Peripheral blood samples were collected frequently before, during, and up to 4 h after TNFα treatment. After Day 15 of the estrous cycle, blood was collected once daily until Day 22 following the first estrus. Lower doses of TNFα (0.1 and 1 μg) decreased the P4 level during the estrous cycle and consequently resulted in shortening of the estrous cycle (18.8 ± 0.9 and 18.0 ± 0.7 days, respectively) compared with the control (22.3 ± 0.3 days, P < 0.05). One microgram of TNFα increased the PGF2α (P < 0.001) and NO (P < 0.001) concentrations and decreased OT secretion (P < 0.01). Higher doses of TNFα (10, 25, 50 μg) stimulated synthesis of P4 (P < 0.001) and PGE2 (P < 0.001), inhibited LTC4 secreton (P < 0.05), and consequently resulted in prolongation of the estrous cycle (throughout 30 days, P < 0.05). Altogether, the results suggest that low concentrations of TNFα cause luteolysis, whereas high concentrations of TNFα activate corpus luteum function and prolong the estrous cycle in cattle.
Experimental Biology and Medicine | 2005
Izabela Woclawek-Potocka; Mamadou M. Bah; Anna Korzekwa; Mariusz K. Piskula; Wiesław Wiczkowski; Andrzej Depta; Dariusz J. Skarzynski
Phytoestrogens acting as endocrine disruptors may induce various pathologies in the female reproductive tract. The purpose of this study was to determine whether phytoestrogens present in the soybean and/or their metabolites are detectable in the plasma of cows fed a diet rich in soy and whether these phytoestrogens influence reproductive efficiency and prostaglandin (PG) synthesis during the estrous cycle and early pregnancy in the bovine endometrium. In in vivo Experiment 1, we found significant levels of daidzein and genistein in the fodder and their metabolites (equol and p-ethyl-phenol) in bovine serum and urine. The mean number of artificial inseminations (Als) and pregnancy rates in two kinds of herds, control and experimental (cows fed with soybean 2.5 kg/day), were almost double in the soy-diet herd in comparison with the control animals. In in vivo Experiment 2, three out of five heifers fed soybean (2.5 kg/day) became pregnant whereas four out of five heifers in the control group became pregnant. The concentrations of a metabolite of PGF2α (PGFM) were significantly higher in the blood plasma of heifers fed a diet rich in soybean than those in the control heifers throughout the first 21 days after ovulation and AI. The higher levels of PGFM were positively correlated with equol and p-ethyl phenol concentrations in the blood. In in vitro experiments, the influence of isoflavones on PG secretion in different stages of the estrous cycle was studied. Although all phytoestrogens augmented the output of both PGs throughout the estrous cycle, equol and p-ethyl-phenol preferentially stimulated PGF2α output. The results obtained lead to the conclusion that soy-derived phytoestrogens and their metabolites disrupt reproductive efficiency and uterus function by modulating the ratio of PGF2α to PGE2, which leads to high, nonphysiological production of luteolytic PGF2α in cattle during the estrous cycle and early pregnancy.
Reproductive Biology | 2008
Anna Korzekwa; Shuko Murakami; Izabela Woclawek-Potocka; Mamadou M. Bah; Kiyoshi Okuda; Dariusz J. Skarzynski
Tumor necrosis factor alpha (TNF) inversely regulates the function of bovine corpus luteum (CL). Whereas the low doses of TNF induce luteolysis, the high doses prolong CL lifespan and prevent luteolysis in vivo. We suggest that the varying effects of TNF may be caused by its action exerted on CL via multiple signaling pathways involving two distinct receptors: TNFR-I (responsible for induction of the cell death) and TNFR-II (implicated in cell proliferation). In the study, we determined CL expressions of TNF, TNFR-I and TNFR-II mRNAs during the bovine estrous cycle using semi-quantitative RT-PCR. Specific transcripts for TNF, TNFR-I and TNFR-II were found in the CL with the highest (p<0.05) expression in the regressed CL. We also examined the TNF influence on the bovine CL function in vivo. On Day 15 of the estrous cycle, cows were infused (via aorta abdominalis) with saline, TNF (1 or 10 microg) or analogue of prostaglandin (PG)F(2alpha) (aPGF(2alpha) , 500 microg; a positive control). Four hours after infusions, CLs were collected by colpotomy and luteal contents of progesterone (P(4)), stable metabolites of nitric oxide (NO; nitrite/nitrate), leukotriene (LT)C(4), luteolytic PGF(2alpha),and luteotropic PGE(2) were determined. Moreover, caspase-3 activity was measured in the CLs as an indicator of apoptosis induction. The luteal content of P(4) decreased (p<0.05) after infusion of 1 microg of TNF. TNF inversely affected PGs content in CL: the low dose increased (p<0.01) the PGF(2alpha) level and the high dose increased (p<0.05) PGE(2) level. Contents of LTC(4) and nitrite/nitrate increased (p<0.01) after the low dose of TNF. Moreover, 1 microg of TNF induced apoptosis and increased (p<0.05) caspase-3 activity in the CLs collected during the late luteal phase. In conclusion, the high expressions of TNF and TNF receptors mRNAs were observed during or just after the luteolysis. A low concentration of TNF stimulated in vivo luteolytic factors such as PGF(2alpha), LTC(4) and NO as well as induced apoptosis; whereas the high concentration of TNF stimulated a survival pathway in the bovine CL increasing luteal content of P(4) and PGE(2).
Experimental Biology and Medicine | 2005
Izabela Woclawek-Potocka; Tomas J. Acosta; Anna Korzekwa; Mamadou M. Bah; Masami Shibaya; Kiyoshi Okuda; Dariusz J. Skarzynski
Prostaglandins (PGs) are known to modulate the proper cycllcity of bovine reproductive organs. The main luteolytlc agent in ruminants Is PGF2α, whereas PGE2 has luteotropic actions. Estradiol 17ß (E2) regulates uterus function by influencing PG synthesis. Phytoestrogens structurally resemble E2 and possess estrogenic activity; therefore, they may mimic the effects of E2 on PG synthesis and influence the reproductive system. Using a cell-culture system of bovine epithelial and stromal cells, we determined cell-specific effects of phytoestrogens (i.e., daidzein, genistein), their metabolites (i.e., equol and para-ethyl-phenol, respectively), and E2 on PGF2α and PGE2synthesis and examined the intracellular mechanisms of their actions. Both PGs produced by stromal and epithelial cells were significantly stimulated by phytoestrogens and their metabolites. However, PGF2α synthesis by both kinds of cells was greater stimulated than PGE2 synthesis. Moreover, epithelial cells treated with phytoestrogens synthesized more PGF2α than stromal cells, increasing the PGF2α, to PGE2 ratio. The epithelial and stromal cells were prelncubated with an estrogen-receptor (ER) antagonist (i.e., ICI), a transiation inhibitor (i.e., actinomycin D), a protein kinase A inhibitor (i.e., staurosporin), and a phospholipase C inhibitor (i.e., U73122) for 0.5 hrs and then stimulated with equol, para-ethyl-phenol, or E2- Although the action of E2 on PGF2α synthesis was blocked by all reagents, the stimulatory effect of phytoestrogens was blocked only by ICI and actinomycin D in both cell types. Moreover, in contrast to E2action, phytoestrogens did not cause Intracellular calcium mobilization in either epithelial or stromal cells. Phytoestrogens stimulate both PGF2α and PGE2 in both cell types of bovine endometrium via an ER-dependent genomic pathway. However, because phytoestrogens preferentially stimulated PGF2α synthesis in epithelial cells of bovine endometrium, they may disrupt uterus function by altering the PGF2α to PGE2 ratio.
Biology of Reproduction | 2007
Dariusz J. Skarzynski; Izabela Woclawek-Potocka; Anna Korzekwa; Mamadou M. Bah; Katarzyna K. Piotrowska; Beata Barszczewska; Kiyoshi Okuda
Abstract We examined whether prostaglandins (PGs) and nitric oxide (NO) mediate tumor necrosis factor (TNF) actions in the estrus cycle. On Day 14 of the cycle, the following solutions were infused into the aorta abdominalis of a total of 51 heifers (Experiments 1 and 2): saline; 1 or 10 μg of TNF; 480 mg indomethacin (INDO), an inhibitor of prostaglandin H synthase; 800 mg L-NAME, an inhibitor of NO synthase; and TNF (1 or 10 μg) in combination with INDO or L-NAME. TNF at 1 μg infused directly into aorta abdominalis increased the level of PGF2alpha and decreased the level of progesterone (P4) in the peripheral blood and shortened the estrus cycle. The high TNF dose stimulated P4 and PGE2 and prolonged the corpus luteum (CL) lifespan. INDO blocked the effects of both TNF doses on the CL lifespan and hormone output. L-NAME completely blocked the effects of the luteolytic TNF dose, whereas the effects of the luteotropic TNF dose were not inhibited. In Experiment 3 (Day 14), saline or different TNF doses were infused into the jugular vein (n = 9) or into the uterine lumen (n = 18). The CL lifespans of the different groups were not different when TNF was infused into the jugular vein. Although high TNF doses (1 and 10 μg) infused into the uterine lumen prolonged the CL lifespan, low doses (0.01 and 0.1 μg) induced premature luteolysis. We suggest that the actions of exogenous TNF on the CL lifespan depend on PG synthesis stimulated by TNF in the uterus. TNF at low concentrations initiates a positive cascade between uterine PGF2alpha and various luteolytic factors, including NO, to complete premature luteolysis. PGE2 is a good candidate mediator of the luteotropic actions of exogenous TNF action.
Reproduction, Fertility and Development | 2008
Rosário P. Roberto da Costa; Ana S.H. Costa; Anna Korzekwa; Rafal Platek; Marta J. Siemieniuch; António Galvão; Dale A. Redmer; José Robalo Silva; Dariusz J. Skarzynski; G. Ferreira-Dias
Nitric oxide (NO) plays an important role in prostaglandin secretion and angiogenesis in the reproductive system. In the present study, the roles of the NO donor spermine NONOate and tumour necrosis factor-alpha (TNF; as a positive control) in prostaglandin production and angiogenic activity of equine endometria during the oestrous cycle were evaluated. In addition, the correlation between NO production and the expression of key prostaglandin synthase proteins was determined. The protein expression of prostaglandin F synthase (PGFS) increased in early and mid-luteal stages, whereas that of prostaglandin E synthase (PGES) was increased in the early luteal stage. The in vitro release of NO was highest after ovulation. There was a high correlation between NO production and PGES expression, as well as NO release and PGFS expression. There were no differences detected in prostaglandin H synthase 2 (PTGS-2) throughout the oestrous cycle and there was no correlation between PTGS-2 expression and NO. In TNF- or spermine-treated endometria, the expression of prostaglandin (PG) E(2) increased in the early and mid-luteal phases, whereas that of PGF(2alpha) increased in the follicular and late luteal phases. Bovine aortic endothelial cell (BAEC) proliferation was stimulated in TNF-treated follicular-phase endometria. However, in spermine-treated endometria, NO delivered from its donor had no effect, or even an inhibitory effect, on BAEC proliferation. In conclusion, despite no change in PTGS-2 expression throughout the oestrous cycle in equine endometrial tissue, there were changes observed in the expression of PGES and PGFS, as well as in the production of PGE(2) and PGF(2alpha). In the mare, NO is involved in the secretory function of the endometrium, modulating PGE(2) and PGF(2alpha) production. Even though TNF caused an increase in the production of angiogenic factors and prostaglandins, its complex action in mare uterus should be elucidated.
Reproduction in Domestic Animals | 2009
D.J. Skarzynski; Katarzyna K. Piotrowska; Mm Bah; Anna Korzekwa; Izabela Woclawek-Potocka; Ken Sawai; Kiyoshi Okuda
The aim of study was to correlate tumour necrosis factor-alpha (TNF) infused doses used with the TNF concentrations achieved and with the secretory function of both the ovary and the uterus in cows. We evaluated the concentrations of progesterone (P4), prostaglandin (PG)F(2alpha), PGE(2) nitric oxide (NO) and TNF in the jugular vein and vena cava caudalis as parameters of exogenous TNF action on the female reproductive tract. Aortae abdominalis of cows (n = 18) were infused with saline or two doses of TNF (luteolytic--1 microg or luteotrophic--10 microg). In the peripheral blood, 1 microg TNF concentrations achieved within the range of 30-45 pg/ml, and 10 microg TNF provoked a sharp increase in achieved concentrations at a range of 250-450 pg/mL). The TNF concentrations achieved in vena cava caudalis were five to six times higher than that in peripheral blood (p < 0.001). One microgram TNF increased PGF(2alpha) and NO (p < 0.001) and decreased P4 (p < 0.05). The higher TNF dose stimulated P4 and PGE(2) (p < 0.01). TNF infusion at luteolytic dose achieved its concentrations at the physiological range previously observed in cows. Luteotrophic TNF dose achieved the concentrations in vena cava caudalis that are much higher than physiological level and were previously noted in pathological circumstances (i.e. mastitis, metritis).
Domestic Animal Endocrinology | 2011
G. Ferreira-Dias; Ana S.H. Costa; L. Mateus; Anna Korzekwa; António Galvão; Dale A. Redmer; Karolina Lukasik; A.Z. Szóstek; Izabela Woclawek-Potocka; Dariusz J. Skarzynski
Cytokines and nitric oxide (NO) are potential mediators of luteal development and maintenance, angiogenesis, and blood flow. The aim of this study was to evaluate (i) the localization and protein expression of endothelial and inducible nitric oxide synthases (eNOS and iNOS) in equine corpora lutea (CL) throughout the luteal phase and (ii) the effect of a nitric oxide donor (spermine NONOate, NONOate) on the production of progesterone (P4) and prostaglandin (PG) E(2) and factor(s) that stimulate endothelial cell proliferation using equine luteal explants. Luteal tissue was classified as corpora hemorrhagica (CH; n = 5), midluteal phase CL (mid-CL; n = 5) or late luteal phase CL (late CL; n = 5). Both eNOS and iNOS were localized in large luteal cells and endothelial cells throughout the luteal phase. The expression of eNOS was the lowest in mid-CL (P < 0.05) and the highest in late CL (P < 0.05). However, no change was found for iNOS expression. Luteal explants were cultured with no hormone added or with NONOate (10(-5) M), tumor necrosis factor-α (TNFα; 10 ng/mL; positive control), or equine LH (100 ng/mL; positive control). Conditioned media by luteal tissues were assayed for P4 and PGE(2) and for their ability to stimulate proliferation of bovine aortic endothelial cells (BAEC). All treatments stimulated release of P4 in CH, but not in mid-CL. TNFα and NONOate treatments also increased PGE(2) levels and BAEC proliferation in CH (P < 0.05). However, in mid-CL, no changes were observed, regardless of the treatments used. These data suggest that NO and TNFα stimulate equine CH secretory functions and the production of angiogenic factor(s). Furthermore, in mares, NO may play a role in CL growth during early luteal development, when vascular development is more intense.
Domestic Animal Endocrinology | 2012
K.K. Piotrowska-Tomala; Marta J. Siemieniuch; A.Z. Szóstek; Anna Korzekwa; Izabela Woclawek-Potocka; António Galvão; Kiyoshi Okuda; Dariusz J. Skarzynski
The aims of this study were to determine the effects of lipopolysaccharides (LPS), tumor necrosis factor (TNF), interleukin 1 alpha (IL-1α), nitric oxide donor (NONOate), or the combination of TNF + IL-1α + NONOate on the following: (i) secretion of prostaglandin (PG)-F(2α), PGE(2), leukotriene (LT)-B(4), and LTC(4) by epithelial cells of the teat cavity and lactiferous sinus of bovine mammary gland; (ii) messenger RNA (mRNA) transcription of enzymes responsible for arachidonic acid (AA) metabolism (prostaglandin-endoperoxide synthase 2 [PTGS2], prostaglandin E synthase [PTGES], prostaglandin F synthase [PGFS], and arachidonate 5-lipooxygenase [ALOX5]); and (iii) proliferation of the cells. The cells were stimulated for 24 h. Prostaglandins and LT were measured by enzyme immunoassay, mRNA transcription of enzymes was determined by real-time reverse transcription polymerase chain reaction, and the cell viability was measured by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide. All factors increased PG secretion, but the highest stimulation was observed after TNF and IL-1α (P < 0.001). Tumor necrosis factor, NONOate, and TNF + IL-1α + NONOate increased LTB(4) production (P < 0.01), whereas LTC(4) was increased by LPS, TNF, and IL-1α (P < 0.01). Lipopolysaccharides, TNF, IL-1α, and the reagents combination increased PTGS2, PTGES, and PGFS mRNA transcription (P < 0.01), whereas ALOX5 mRNA transcription was increased only by TNF (P < 0.001). Lipopolysaccharides, TNF, IL-1α, NONOate, and the combination of reagents increased the cell number (P < 0.001). Mediators of acute-clinical Escherichia coli mastitis locally modulate PG and LT secretion by the epithelial cells of the teat cavity and lactiferous sinus, which might be a useful first line of defense for the bovine mammary gland. Moreover, the modulation of PG and LT secretion and the changing ratio of luteotropic (PGE(2), LTB(4)) to luteolytic (PGF(2α), LTC(4)) metabolites may contribute to disorders in reproductive functions.