Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Kotronen is active.

Publication


Featured researches published by Anna Kotronen.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2007

Fatty Liver: A Novel Component of the Metabolic Syndrome

Anna Kotronen; Hannele Yki-Järvinen

Although the epidemic of obesity has been accompanied by an increase in the prevalence of the metabolic syndrome, not all obese develop the syndrome and even lean individuals can be insulin resistant. Both lean and obese insulin resistant individuals have an excess of fat in the liver which is not attributable to alcohol or other known causes of liver disease, a condition defined as nonalcoholic fatty liver disease (NAFLD) by gastroenterologists. The fatty liver is insulin resistant. Liver fat is highly significantly and linearly correlated with all components of the metabolic syndrome independent of obesity. Overproduction of glucose, VLDL, CRP, and coagulation factors by the fatty liver could contribute to the excess risk of cardiovascular disease associated with the metabolic syndrome and NAFLD. Both of the latter conditions also increase the risk of type 2 diabetes and advanced liver disease. The reason why some deposit fat in the liver whereas others do not is poorly understood. Individuals with a fatty liver are more likely to have excess intraabdominal fat and inflammatory changes in adipose tissue. Intervention studies have shown that liver fat can be decreased by weight loss, PPAR&ggr; agonists, and insulin therapy.


Digestive and Liver Disease | 2010

From the metabolic syndrome to NAFLD or vice versa

E. Vanni; Elisabetta Bugianesi; Anna Kotronen; Samuele De Minicis; Hannele Yki-Järvinen; G. Svegliati-Baroni

The metabolic syndrome encompasses metabolic and cardiovascular risk factors which predict diabetes and cardiovascular disease (CVD) better than any of its individual components. Nonalcoholic fatty liver disease (NAFLD) comprises a disease spectrum which includes variable degrees of simple steatosis (nonalcoholic fatty liver, NAFL), nonalcoholic steatohepatitis (NASH) and cirrhosis. NAFLD is the hepatic manifestation of the metabolic syndrome, with insulin resistance as the main pathogenetic mechanism. Recent data indicate that hyperinsulinemia is probably the consequence rather than cause of NAFLD and NAFLD can be considered an independent predictor of cardiovascular disease. Serum free fatty acids derived from lipolysis of visceral adipose tissue are the main source of hepatic triglycerides in NAFLD, although hepatic de novo lipogenesis and dietary fat supply contribute to the pathogenesis of NAFLD. Approximately 10-25% NAFLD patients develop NASH, the evolutive form of hepatic steatosis. Presumably in a genetically predisposed environment, this increased lipid overload overwhelms the oxidative capacity and reactive oxygen species are generated, leading to lipid peroxidation, cytokine induction, chemoattraction of inflammatory cells, hepatic stellate cell activation and finally fibrogenesis with extracellular matrix deposition. No currently available therapies for NAFLD and NASH exist. Recently nuclear receptors have emerged as key regulators of lipid and carbohydrate metabolism for which specific pharmacological ligands are available, making them attractive therapeutic targets for NAFLD and NASH.


Gastroenterology | 2009

Prediction of Non-Alcoholic Fatty Liver Disease and Liver Fat Using Metabolic and Genetic Factors

Anna Kotronen; Markku Peltonen; Antti Hakkarainen; Ksenia Sevastianova; Robert Bergholm; Lina M. Johansson; Nina Lundbom; Aila Rissanen; Martin Ridderstråle; Leif Groop; Marju Orho-Melander; Hannele Yki-Järvinen

BACKGROUND & AIMS Our aims were to develop a method to accurately predict non-alcoholic fatty liver disease (NAFLD) and liver fat content based on routinely available clinical and laboratory data and to test whether knowledge of the recently discovered genetic variant in the PNPLA3 gene (rs738409) increases accuracy of the prediction. METHODS Liver fat content was measured using proton magnetic resonance spectroscopy in 470 subjects, who were randomly divided into estimation (two thirds of the subjects, n = 313) and validation (one third of the subjects, n = 157) groups. Multivariate logistic and linear regression analyses were used to create an NAFLD liver fat score to diagnose NAFLD and liver fat equation to estimate liver fat percentage in each individual. RESULTS The presence of the metabolic syndrome and type 2 diabetes, fasting serum (fS) insulin, fS-aspartate aminotransferase (AST), and the AST/alanine aminotransferase ratio were independent predictors of NAFLD. The score had an area under the receiver operating characteristic curve of 0.87 in the estimation and 0.86 in the validation group. The optimal cut-off point of -0.640 predicted increased liver fat content with sensitivity of 86% and specificity of 71%. Addition of the genetic information to the score improved the accuracy of the prediction by only <1%. Using the same variables, we developed a liver fat equation from which liver fat percentage of each individual could be estimated. CONCLUSIONS The NAFLD liver fat score and liver fat equation provide simple and noninvasive tools to predict NAFLD and liver fat content.


Nature Medicine | 2007

Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation

Tuomas Tammela; Anne Saaristo; Tanja Holopainen; Johannes Lyytikkä; Anna Kotronen; Miia Pitkonen; Usama Abo-Ramadan; Seppo Ylä-Herttuala; Tatiana V. Petrova; Kari Alitalo

Surgery or radiation therapy of metastatic cancer often damages lymph nodes, leading to secondary lymphedema. Here we show, using a newly established mouse model, that collecting lymphatic vessels can be regenerated and fused to lymph node transplants after lymph node removal. Treatment of lymph node–excised mice with adenovirally delivered vascular endothelial growth factor-C (VEGF-C) or VEGF-D induced robust growth of the lymphatic capillaries, which gradually underwent intrinsic remodeling, differentiation and maturation into functional collecting lymphatic vessels, including the formation of uniform endothelial cell-cell junctions and intraluminal valves. The vessels also reacquired pericyte contacts, which downregulated lymphatic capillary markers during vessel maturation. Growth factor therapy improved the outcome of lymph node transplantation, including functional reconstitution of the immunological barrier against tumor metastasis. These results show that growth factor–induced maturation of lymphatic vessels is possible in adult mice and provide a basis for future therapy of lymphedema.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2008

Gene expression in human NAFLD

Dario Greco; Anna Kotronen; Jukka Westerbacka; Oscar Puig; Perttu Arkkila; Tuula Kiviluoto; Saara Laitinen; Maria Kolak; Rachel M. Fisher; Anders Hamsten; Petri Auvinen; Hannele Yki-Järvinen

Despite the high prevalence of nonalcoholic fatty liver disease (NAFLD), little is known of its pathogenesis based on study of human liver samples. By the use of Affymetrix GeneChips (17,601 genes), we investigated gene expression in the human liver of subjects with extreme steatosis due to NAFLD without histological signs of inflammation (liver fat 66.0 +/- 6.8%) and in subjects with low liver fat content (6.4 +/- 2.7%). The data were analyzed by using sequence-based reannotation of Affymetrix probes and a robust model-based normalization method. We identified genes involved in hepatic glucose and lipid metabolism, insulin signaling, inflammation, coagulation, and cell adhesion to be significantly associated with liver fat content. In addition, genes involved in ceramide signaling (MAP2K4) and metabolism (UGCG) were found to be positively associated with liver fat content. Genes involved in lipid metabolism (PLIN, ACADM), fatty acid transport (FABP4, CD36), amino acid catabolism (BCAT1), and inflammation (CCL2) were validated by real-time PCR and were found to be upregulated in subjects with high liver fat content. The data show that multiple changes in gene expression characterize simple steatosis.


Gastroenterology | 2008

Increased liver fat, impaired insulin clearance, and hepatic and adipose tissue insulin resistance in type 2 diabetes.

Anna Kotronen; Leena Juurinen; Mirja Tiikkainen; Satu Vehkavaara; Hannele Yki–Järvinen

BACKGROUND & AIMS Liver fat is increased in type 2 diabetes. We determined whether it is associated with impaired insulin clearance and to what extent insulin resistance, impaired insulin clearance, or secretion contribute to fasting hyperinsulinemia. We also examined whether insulin suppression of serum free fatty acid (FFA) correlates with liver fat. METHODS We compared 68 type 2 diabetic patients and age-, gender-, and body mass index (BMI)-matched nondiabetic subjects. Liver fat was determined by (1)H-MRS, body composition by magnetic resonance imaging, and insulin clearance and action on hepatic glucose production (HGP), glucose uptake, and serum FFA by the euglycemic insulin clamp technique (insulin 0.3 mU/kg x min) combined with infusion of [3-(3)H]glucose. RESULTS Liver fat was 54% higher and insulin clearance 24% lower in type 2 diabetic patients than nondiabetic subjects. The percent suppression of both HGP and serum FFA by insulin were comparable, but serum insulin concentrations were significantly higher (34 mU/L [interquartile range, 30-39 mU/L] vs 25 mU/L [interquartile range, 22-30 mU/L]; P < .0001) in the type 2 diabetic than the nondiabetic subjects. When this difference was taken into account, both hepatic and adipose tissue insulin sensitivity were impaired in the type 2 diabetic subjects. Liver fat correlated with insulin clearance (r = -0.41; P = .001), and hepatic (r = 0.46; P = .0001) and adipose tissue (r = 0.55; P < .0001) insulin sensitivity. Hepatic but not peripheral insulin sensitivity was independently associated with liver fat content. Insulin clearance and secretion were independent determinants of fasting serum insulin. CONCLUSIONS We conclude that increased liver fat, impaired insulin clearance, and hepatic and adipose tissue insulin resistance characterize type 2 diabetic patients.


Diabetes | 2009

Hepatic Stearoyl-CoA Desaturase (SCD)-1 Activity and Diacylglycerol but Not Ceramide Concentrations Are Increased in the Nonalcoholic Human Fatty Liver

Anna Kotronen; Tuulikki Seppänen-Laakso; Jukka Westerbacka; Tuula Kiviluoto; Johanna Arola; Anna-Liisa Ruskeepää; Matej Orešič; Hannele Yki-Järvinen

OBJECTIVE—To determine whether 1) hepatic ceramide and diacylglycerol concentrations, 2) SCD1 activity, and 3) hepatic lipogenic index are increased in the human nonalcoholic fatty liver. RESEARCH DESIGN AND METHODS—We studied 16 subjects with (n = 8) and without (n = 8) histologically determined nonalcoholic fatty liver (NAFL+ and NAFL−) matched for age, sex, and BMI. Hepatic concentrations of lipids and fatty acids were quantitated using ultra-performance liquid chromatography coupled to mass spectrometry and gas chromatography. RESULTS—The absolute (nmol/mg) hepatic concentrations of diacylglycerols but not ceramides were increased in the NAFL+ group compared with the NAFL− group. The livers of the NAFL+ group contained proportionally less long-chain polyunsaturated fatty acids as compared with the NAFL− group. Liver fat percent was positively related to hepatic stearoyl-CoA desaturase 1 (SCD1) activity index (r = 0.70, P = 0.003) and the hepatic lipogenic index (r = 0.54, P = 0.030). Hepatic SCD1 activity index was positively related to the concentrations of diacylglycerols (r = 0.71, P = 0.002) but not ceramides (r = 0.07, NS). CONCLUSIONS—We conclude that diacylglycerols but not ceramides are increased in NAFL. The human fatty liver is also characterized by depletion of long polyunsaturated fatty acids in the liver and increases in hepatic SCD1 and lipogenic activities.


Diabetologia | 2009

Serum saturated fatty acids containing triacylglycerols are better markers of insulin resistance than total serum triacylglycerol concentrations

Anna Kotronen; Vidya Velagapudi; Laxman Yetukuri; J. Westerbacka; Robert Bergholm; K. Ekroos; Janne Makkonen; Marja-Riitta Taskinen; Matej Orešič; Hannele Yki-Järvinen

Aims/hypothesisThe weak relationship between insulin resistance and total serum triacylglycerols (TGs) could be in part due to heterogeneity of TG molecules and their distribution within different lipoproteins. We determined concentrations of individual TGs and the fatty acid composition of serum and major lipoprotein particles and analysed how changes in different TGs and fatty acid composition are related to features of insulin resistance and abdominal obesity.MethodsWe performed lipidomic analyses of all major lipoprotein fractions using two analytical platforms in 16 individuals, who exhibited a broad range of insulin sensitivity.ResultsWe identified 45 different TGs in serum. Serum TGs containing saturated and monounsaturated fatty acids were positively, while TGs containing essential linoleic acid (18:2 n−6) were negatively correlated with HOMA-IR. Specific serum TGs that correlated positively with HOMA-IR were also significantly positively related to HOMA-IR when measured in very-low-density lipoproteins (VLDLs), intermediate-density lipoproteins (IDLs) and LDL, but not in HDL subfraction 2 (HDL2) or 3 (HDL3). Analyses of proportions of esterified fatty acids within lipoproteins revealed that palmitic acid (16:0) was positively related to HOMA-IR when measured in VLDL, IDL and LDL, but not in HDL2 or HDL3. Monounsaturated palmitoleic (16:1 n−7) and oleic (18:1 n−9) acids were positively related to HOMA-IR when measured in HDL2 and HDL3, but not in VLDL, IDL or LDL. Linoleic acid was negatively related to HOMA-IR in all lipoproteins.Conclusions/interpretationSerum concentrations of specific TGs, such as TG(16:0/16:0/18:1) or TG(16:0/18:1/18:0), may be more precise markers of insulin resistance than total serum TG concentrations.


Obesity | 2010

Comparison of Lipid and Fatty Acid Composition of the Liver, Subcutaneous and Intra-abdominal Adipose Tissue, and Serum

Anna Kotronen; Tuulikki Seppänen-Laakso; Jukka Westerbacka; Tuula Kiviluoto; Johanna Arola; Anna-Liisa Ruskeepää; Hannele Yki-Järvinen; Matej Orešič

Ceramides may mediate saturated fat–induced insulin resistance, but there are no data comparing ceramide concentrations between human tissues. We therefore performed lipidomic analysis of human subcutaneous (SCfat) and intra‐abdominal (IAfat) adipose tissue, the liver, and serum in eight subjects. The liver contained (nmol/mg tissue) significantly more ceramides (1.5–3‐fold), sphingomyelins (7–8‐fold), phosphatidylethanolamines (10–11‐fold), lysophosphatidylcholines (7–12‐fold), less ether‐linked phosphatidylcholines (2–2.5‐fold) but similar amounts of diacylglycerols as compared to SCfat and IAfat. The amounts of ceramides and their synthetic precursors, such as palmitic (16:0) free fatty acids and sphingomyelins, differed considerably between the tissues. The liver contained proportionally more palmitic, stearic (18:0), and long polyunsaturated fatty acids than adipose tissues. Stearoyl‐CoA desaturase 1 (SCD1) activity reflected by serum, estimated from the 16:1/16:0‐ratio, was closely related to that in the liver (r = 0.86, P = 0.024) but not adipose tissues. This was also true for estimated elongase (18:1/16:1, r = 0.89, P = 0.01), and Δ5 (20:4/20:3, r = 0.89, P = 0.012) and Δ6 (18:3[n‐6]/18:2, r = 1.0, P < 0.001) desaturase activities. We conclude that the human liver contains higher concentrations of ceramides and saturated free fatty acids than either SCfat or IAfat.


BMC Public Health | 2011

Metabolically healthy and unhealthy obesity phenotypes in the general population: the FIN-D2D Survey

Pia Pajunen; Anna Kotronen; Eeva Korpi-Hyövälti; Sirkka Keinänen-Kiukaanniemi; Heikki Oksa; Leo Niskanen; Timo Saaristo; Juha Saltevo; Jouko Sundvall; Mauno Vanhala; Matti Uusitupa; Markku Peltonen

BackgroundThe aim of this work was to examine the prevalence of different metabolical phenotypes of obesity, and to analyze, by using different risk scores, how the metabolic syndrome (MetS) definition discriminates between unhealthy and healthy metabolic phenotypes in different obesity classes.MethodsThe Finnish type 2 diabetes (FIN-D2D) survey, a part of the larger implementation study, was carried out in 2007. The present cross-sectional analysis comprises 2,849 individuals aged 45-74 years. The MetS was defined with the new Harmonization definition. Cardiovascular risk was estimated with the Framingham and SCORE risk scores. Diabetes risk was assessed with the FINDRISK score. Non-alcoholic fatty liver disease (NAFLD) was estimated with the NAFLD score. Participants with and without MetS were classified in different weight categories and analysis of regression models were used to test the linear trend between body mass index (BMI) and various characteristics in individuals with and without MetS; and interaction between BMI and MetS.ResultsA metabolically healthy but obese phenotype was observed in 9.2% of obese men and in 16.4% of obese women. The MetS-BMI interaction was significant for fasting glucose, 2-hour plasma glucose, fasting plasma insulin and insulin resistance (HOMA-IR)(p < 0.001 for all). The prevalence of total diabetes (detected prior to or during survey) was 37.0% in obese individuals with MetS and 4.3% in obese individuals without MetS (p < 0.001). MetS-BMI interaction was significant (p < 0.001) also for the Framingham 10 year CVD risk score, NAFLD score and estimated liver fat %, indicating greater effect of increasing BMI in participants with MetS compared to participants without MetS. The metabolically healthy but obese individuals had lower 2-hour postload glucose levels (p = 0.0030), lower NAFLD scores (p < 0.001) and lower CVD risk scores (Framingham, p < 0.001; SCORE, p = 0.002) than normal weight individuals with MetS.ConclusionsUndetected Type 2 diabetes was more prevalent among those with MetS irrespective of the BMI class and increasing BMI had a significantly greater effect on estimates of liver fat and future CVD risk among those with MetS compared with participants without MetS. A healthy obese phenotype was associated with a better metabolic profile than observed in normal weight individuals with MetS.

Collaboration


Dive into the Anna Kotronen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markku Peltonen

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge