Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Krepelova is active.

Publication


Featured researches published by Anna Krepelova.


Cell | 2009

Histone Crosstalk between H3S10ph and H4K16ac Generates a Histone Code that Mediates Transcription Elongation

Alessio Zippo; Riccardo Serafini; Marina Rocchigiani; Susanna Pennacchini; Anna Krepelova; Salvatore Oliviero

The phosphorylation of the serine 10 at histone H3 has been shown to be important for transcriptional activation. Here, we report the molecular mechanism through which H3S10ph triggers transcript elongation of the FOSL1 gene. Serum stimulation induces the PIM1 kinase to phosphorylate the preacetylated histone H3 at the FOSL1 enhancer. The adaptor protein 14-3-3 binds the phosphorylated nucleosome and recruits the histone acetyltransferase MOF, which triggers the acetylation of histone H4 at lysine 16 (H4K16ac). This histone crosstalk generates the nucleosomal recognition code composed of H3K9acS10ph/H4K16ac determining a nucleosome platform for the bromodomain protein BRD4 binding. The recruitment of the positive transcription elongation factor b (P-TEFb) via BRD4 induces the release of the promoter-proximal paused RNA polymerase II and the increase of its processivity. Thus, the single phosphorylation H3S10ph at the FOSL1 enhancer triggers a cascade of events which activate transcriptional elongation.


Cell | 2013

Dnmt3L Antagonizes DNA Methylation at Bivalent Promoters and Favors DNA Methylation at Gene Bodies in ESCs

Francesco Neri; Anna Krepelova; Danny Incarnato; Mara Maldotti; Caterina Parlato; Federico Galvagni; Filomena Matarese; Hendrik G. Stunnenberg; Salvatore Oliviero

The de novo DNA methyltransferase 3-like (Dnmt3L) is a catalytically inactive DNA methyltransferase that cooperates with Dnmt3a and Dnmt3b to methylate DNA. Dnmt3L is highly expressed in mouse embryonic stem cells (ESCs), but its function in these cells is unknown. Through genome-wide analysis of Dnmt3L knockdown in ESCs, we found that Dnmt3L is a positive regulator of methylation at the gene bodies of housekeeping genes and, more surprisingly, is also a negative regulator of methylation at promoters of bivalent genes. Dnmt3L is required for the differentiation of ESCs into primordial germ cells (PGCs) through the activation of the homeotic gene Rhox5. We demonstrate that Dnmt3L interacts with the Polycomb PRC2 complex in competition with the DNA methyltransferases Dnmt3a and Dnmt3b to maintain low methylation levels at the H3K27me3 regions. Thus, in ESCs, Dnmt3L counteracts the activity of de novo DNA methylases to maintain hypomethylation at promoters of bivalent developmental genes.


Nature | 2017

Intragenic DNA methylation prevents spurious transcription initiation

Francesco Neri; Stefania Rapelli; Anna Krepelova; Danny Incarnato; Caterina Parlato; Giulia Basile; Mara Maldotti; Francesca Anselmi; Salvatore Oliviero

In mammals, DNA methylation occurs mainly at CpG dinucleotides. Methylation of the promoter suppresses gene expression, but the functional role of gene-body DNA methylation in highly expressed genes has yet to be clarified. Here we show that, in mouse embryonic stem cells, Dnmt3b-dependent intragenic DNA methylation protects the gene body from spurious RNA polymerase II entry and cryptic transcription initiation. Using different genome-wide approaches, we demonstrate that this Dnmt3b function is dependent on its enzymatic activity and recruitment to the gene body by H3K36me3. Furthermore, the spurious transcripts can either be degraded by the RNA exosome complex or capped, polyadenylated, and delivered to the ribosome to produce aberrant proteins. Elongating RNA polymerase II therefore triggers an epigenetic crosstalk mechanism that involves SetD2, H3K36me3, Dnmt3b and DNA methylation to ensure the fidelity of gene transcription initiation, with implications for intragenic hypomethylation in cancer.


Genome Biology | 2013

Genome-wide analysis identifies a functional association of Tet1 and Polycomb repressive complex 2 in mouse embryonic stem cells

Francesco Neri; Danny Incarnato; Anna Krepelova; Stefania Rapelli; Andrea Pagnani; Riccardo Zecchina; Caterina Parlato; Salvatore Oliviero

BackgroundTen-Eleven Translocation (TETs)proteins mediate the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Tet1 is expressed at high levels in mouse embryonic stem cells (ESCs), where it mediates the induction of 5hmC decoration on gene-regulatory elements. While the function of Tet1 is known, the mechanisms of its specificity remain unclear.ResultsWe perform a genome-wide comparative analysis of 5hmC in pluripotent ESCs, as well as in differentiated embryonic and adult cells. We find that 5hmC co-localization with Polycomb repressive complex 2 (PRC2) is specific to ESCs and is absent in differentiated cells. Tet1 in ESCs is distributed on bivalent genes in two independent pools: one with Sin3a centered at non-hydroxymethylated transcription start sites and another centered downstream from these sites. This latter pool of Tet1 co-localizes with 5hmC and PRC2. Through co-immunoprecipitation experiments, we show that Tet1 forms a complex with PRC2 specifically in ESCs. Genome-wide analysis of 5hmC profiles in ESCs following knockdown of the PRC2 subunit Suz12 shows a reduction of 5hmC within promoter sequences, specifically at H3K27me3-positive regions of bivalent promoters.ConclusionsIn ESCs, PRC2 recruits Tet1 to chromatin at H3K27me3 positive regions of the genome, with 5hmC enriched in a broad peak centered 455 bp after the transcription start site and dependent on the PRC2 component Suz12. These results suggest that PRC2-dependent recruitment of Tet1 contributes to epigenetic plasticity throughout cell differentiation.


Oncogene | 2015

TET1 is a tumour suppressor that inhibits colon cancer growth by derepressing inhibitors of the WNT pathway

Francesco Neri; Daniela Dettori; Danny Incarnato; Anna Krepelova; Stefania Rapelli; Mara Maldotti; Caterina Parlato; P Paliogiannis; Salvatore Oliviero

Ten eleven translocation (TET) enzymes catalyse the oxidative reactions of 5-methylcytosine (5mC) to promote the demethylation process. The reaction intermediate 5-hydroxymethylcytosine (5hmC) has been shown to be abundant in embryonic stem cells and tissues but strongly depleted in human cancers. Genetic mutations of TET2 gene were associated with leukaemia, whereas TET1 downregulation has been shown to promote malignancy in breast cancer. Here we report that TET1 is downregulated in colon tumours from the initial stage. TET1 silencing in primary epithelial colon cells increase their cellular proliferation while its re-expression in colon cancer cells inhibits their proliferation and the growth of tumour xenografts even at later stages. We found that TET1 binds to the promoter of the DKK gene inhibitors of the WNT signalling to maintain them hypomethylated. Downregulation of TET1 during colon cancer initiation leads to repression, by DNA methylation, the promoters of the inhibitors of the WNT pathway resulting in a constitutive activation of the WNT pathway. Thus the DNA hydroxymethylation mediated by TET1 controlling the WNT signalling is a key player of tumour growth. These results provide new insights for understanding how tumours escape cellular controls.


Molecular and Cellular Biology | 2012

Myc Regulates the Transcription of the PRC2 Gene To Control the Expression of Developmental Genes in Embryonic Stem Cells

Francesco Neri; Alessio Zippo; Anna Krepelova; Alessandro Cherubini; Marina Rocchigiani; Salvatore Oliviero

ABSTRACT Myc family members are critical to maintain embryonic stem cells (ESC) in the undifferentiated state. However, the mechanism by which they perform this task has not yet been elucidated. Here we show that Myc directly upregulates the transcription of all core components of the Polycomb repressive complex 2 (PRC2) as well as the ESC-specific PRC2-associated factors. By expressing Myc protein fused with the estrogen receptor (Myc-ER) in fibroblasts, we observed that Myc, binding to the regulatory elements of Suz12, Ezh2, and Eed, induces the acetylation of histones H3 and H4 and the recruitment of elongating RNA polymerase II at their promoters. The silencing of both c-Myc and N-Myc in ESC results in reduced expression of PRC2 and H3K27me3 at Polycomb target developmental regulators and upregulation of genes involved in primitive endoderm differentiation. The ectopic expression of PRC2 in ESC, either silenced for c-Myc and N-Myc or induced to differentiate by leukemia inhibitory factor (LIF) withdrawal, is sufficient to maintain the H3K27me3 mark at genes with bivalent histone modifications and keep repressed the genes involved in ESC differentiation. Thus, Myc proteins control the expression of developmental regulators via the upregulation of the Polycomb PRC2 complex.


Nucleic Acids Research | 2015

TET1 is controlled by pluripotency-associated factors in ESCs and downmodulated by PRC2 in differentiated cells and tissues

Francesco Neri; Danny Incarnato; Anna Krepelova; Daniela Dettori; Stefania Rapelli; Mara Maldotti; Caterina Parlato; Francesca Anselmi; Federico Galvagni; Salvatore Oliviero

Ten-eleven translocation (Tet) genes encode for a family of hydroxymethylase enzymes involved in regulating DNA methylation dynamics. Tet1 is highly expressed in mouse embryonic stem cells (ESCs) where it plays a critical role the pluripotency maintenance. Tet1 is also involved in cell reprogramming events and in cancer progression. Although the functional role of Tet1 has been largely studied, its regulation is poorly understood. Here we show that Tet1 gene is regulated, both in mouse and human ESCs, by the stemness specific factors Oct3/4, Nanog and by Myc. Thus Tet1 is integrated in the pluripotency transcriptional network of ESCs. We found that Tet1 is switched off by cell proliferation in adult cells and tissues with a consequent genome-wide reduction of 5hmC, which is more evident in hypermethylated regions and promoters. Tet1 downmodulation is mediated by the Polycomb repressive complex 2 (PRC2) through H3K27me3 histone mark deposition. This study expands the knowledge about Tet1 involvement in stemness circuits in ESCs and provides evidence for a transcriptional relationship between Tet1 and PRC2 in adult proliferating cells improving our understanding of the crosstalk between the epigenetic events mediated by these factors.


PLOS ONE | 2014

Myc and Max Genome-Wide Binding Sites Analysis Links the Myc Regulatory Network with the Polycomb and the Core Pluripotency Networks in Mouse Embryonic Stem Cells

Anna Krepelova; Francesco Neri; Mara Maldotti; Stefania Rapelli; Salvatore Oliviero

Myc is a master transcription factor that has been demonstrated to be required for embryonic stem cell (ESC) pluripotency, self-renewal, and inhibition of differentiation. Although recent works have identified several Myc-targets in ESCs, the list of Myc binding sites is largely incomplete due to the low sensitivity and specificity of the antibodies available. To systematically identify Myc binding sites in mouse ESCs, we used a stringent streptavidin-based genome-wide chromatin immunoprecipitation (ChIP-Seq) approach with biotin-tagged Myc (Bio-Myc) as well as a ChIP-Seq of the Myc binding partner Max. This analysis identified 4325 Myc binding sites, of which 2885 were newly identified. The identified sites overlap with more than 85% of the Max binding sites and are enriched for H3K4me3-positive promoters and active enhancers. Remarkably, this analysis unveils that Myc/Max regulates chromatin modifiers and transcriptional regulators involved in stem cell self-renewal linking the Myc-centered network with the Polycomb and the Core networks. These results provide insights into the contribution of Myc and Max in maintaining stem cell self-renewal and keeping these cells in an undifferentiated state.


Nature Protocols | 2016

Methylation-assisted bisulfite sequencing to simultaneously map 5fC and 5caC on a genome-wide scale for DNA demethylation analysis.

Francesco Neri; Danny Incarnato; Anna Krepelova; Caterina Parlato; Salvatore Oliviero

Active DNA demethylation is mediated by ten-eleven translocation (TET) proteins that progressively oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). We have developed a methylation-assisted bisulfite sequencing (MAB-seq) method that enables direct genome-scale mapping and quantification of 5fC and 5caC marks together at single-base resolution. In bisulfite sequencing (BS), unmethylated cytosine residues (Cs), 5fCs and 5caCs, are converted to uracil and cannot be discriminated from each other. The pretreatment of the DNA with the CpG methylation enzyme M.SssI, which converts only the Cs to 5mCs, protects Cs but not 5fCs and 5caCs, which enables direct detection of 5fCs and 5caCs as uracils. Here we also describe an adapted version of the protocol to perform reduced-representation MAB-seq (RRMAB-seq) that provides increased coverage on CpG-rich regions, thus reducing the execution costs and increasing the feasibility of the technique. The main advantage of MAB-seq is to reduce the number of chemical/enzymatic DNA treatments required before bisulfite treatment and to avoid the need for prohibitive sequencing coverage, thus making it more reliable and affordable than subtractive approaches. The method presented here is the ideal tool for studying DNA demethylation dynamics in any biological system. Overall timing is ∼3 d for library preparation.


Genomics | 2014

High-throughput single nucleotide variant discovery in E14 mouse embryonic stem cells provides a new reference genome assembly

Danny Incarnato; Anna Krepelova; Francesco Neri

Mouse E14 embryonic stem cells (ESCs) are a well-characterized and widespread used ESC line, often employed for genome-wide studies involving next generation sequencing analysis. More than 2×10(9) sequences made on Illumina platform derived from the genome of E14 ESCs were used to build a database of about 2.7×10(6) single nucleotide variants (SNVs). The identified variants are enriched in intergenic regions, but several thousands reside in gene exons and regulatory regions, such as promoters, enhancers, splicing sites and untranslated regions of RNA, thus indicating high probability of an important functional impact on the molecular biology of these cells. We created a new E14 genome assembly reference that increases the number of mapped reads of about 5%. We performed a Reduced Representation Bisulfite Sequencing on E14 ESCs and we obtained an increase of about 120,000 called CpGs and avoided about 20,000 wrong CpG calls with respect to the mm9 genome reference.

Collaboration


Dive into the Anna Krepelova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge