Anna L. Godfrey
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anna L. Godfrey.
The New England Journal of Medicine | 2011
Elli Papaemmanuil; Mario Cazzola; Jacqueline Boultwood; Luca Malcovati; Paresh Vyas; David T. Bowen; Andrea Pellagatti; James S. Wainscoat; Eva Hellström-Lindberg; Carlo Gambacorti-Passerini; Anna L. Godfrey; I. Rapado; A. Cvejic; Richard Rance; C. McGee; Peter Ellis; Laura Mudie; Phil Stephens; Stuart McLaren; Charlie E. Massie; Patrick Tarpey; Ignacio Varela; Serena Nik-Zainal; Helen Davies; Adam Shlien; David Jones; Keiran Raine; Jonathon Hinton; Adam Butler; J Teague
BACKGROUND Myelodysplastic syndromes are a diverse and common group of chronic hematologic cancers. The identification of new genetic lesions could facilitate new diagnostic and therapeutic strategies. METHODS We used massively parallel sequencing technology to identify somatically acquired point mutations across all protein-coding exons in the genome in 9 patients with low-grade myelodysplasia. Targeted resequencing of the gene encoding RNA splicing factor 3B, subunit 1 (SF3B1), was also performed in a cohort of 2087 patients with myeloid or other cancers. RESULTS We identified 64 point mutations in the 9 patients. Recurrent somatically acquired mutations were identified in SF3B1. Follow-up revealed SF3B1 mutations in 72 of 354 patients (20%) with myelodysplastic syndromes, with particularly high frequency among patients whose disease was characterized by ring sideroblasts (53 of 82 [65%]). The gene was also mutated in 1 to 5% of patients with a variety of other tumor types. The observed mutations were less deleterious than was expected on the basis of chance, suggesting that the mutated protein retains structural integrity with altered function. SF3B1 mutations were associated with down-regulation of key gene networks, including core mitochondrial pathways. Clinically, patients with SF3B1 mutations had fewer cytopenias and longer event-free survival than patients without SF3B1 mutations. CONCLUSIONS Mutations in SF3B1 implicate abnormalities of messenger RNA splicing in the pathogenesis of myelodysplastic syndromes. (Funded by the Wellcome Trust and others.).
Blood | 2011
Luca Malcovati; Elli Papaemmanuil; David T. Bowen; Jacqueline Boultwood; Matteo G. Della Porta; Cristiana Pascutto; Erica Travaglino; Michael J. Groves; Anna L. Godfrey; Ilaria Ambaglio; Anna Gallì; Matteo Da Vià; Simona Conte; Sudhir Tauro; Norene Keenan; Ann Hyslop; Jonathan Hinton; Laura Mudie; James S. Wainscoat; P. Andrew Futreal; Michael R. Stratton; Peter J. Campbell; Eva Hellström-Lindberg; Mario Cazzola
In a previous study, we identified somatic mutations of SF3B1, a gene encoding a core component of RNA splicing machinery, in patients with myelodysplastic syndrome (MDS). Here, we define the clinical significance of these mutations in MDS and myelodysplastic/myeloproliferative neoplasms (MDS/MPN). The coding exons of SF3B1 were screened using massively parallel pyrosequencing in patients with MDS, MDS/MPN, or acute myeloid leukemia (AML) evolving from MDS. Somatic mutations of SF3B1 were found in 150 of 533 (28.1%) patients with MDS, 16 of 83 (19.3%) with MDS/MPN, and 2 of 38 (5.3%) with AML. There was a significant association of SF3B1 mutations with the presence of ring sideroblasts (P < .001) and of mutant allele burden with their proportion (P = .002). The mutant gene had a positive predictive value for ring sideroblasts of 97.7% (95% confidence interval, 93.5%-99.5%). In multivariate analysis including established risk factors, SF3B1 mutations were found to be independently associated with better overall survival (hazard ratio = 0.15, P = .025) and lower risk of evolution into AML (hazard ratio = 0.33, P = .049). The close association between SF3B1 mutations and disease phenotype with ring sideroblasts across MDS and MDS/MPN is consistent with a causal relationship. Furthermore, SF3B1 mutations are independent predictors of favorable clinical outcome, and their incorporation into stratification systems might improve risk assessment in MDS.
Cancer Cell | 2010
Edwin Chen; Philip A. Beer; Anna L. Godfrey; Christina A. Ortmann; Juan Li; Ana P. Costa-Pereira; Catherine E. Ingle; Emmanouil T. Dermitzakis; Peter J. Campbell; Anthony R. Green
The JAK2V617F mutation is associated with distinct myeloproliferative neoplasms, including polycythemia vera (PV) and essential thrombocythemia (ET), but it remains unclear how it generates disparate disorders. By comparing clonally-derived mutant and wild-type cells from individual patients, we demonstrate that the transcriptional consequences of JAK2V617F are subtle, and that JAK2V617F-heterozygous erythroid cells from ET and PV patients exhibit differential interferon signaling and STAT1 phosphorylation. Increased STAT1 activity in normal CD34-positive progenitors produces an ET-like phenotype, whereas downregulation of STAT1 activity in JAK2V617F-heterozygous ET progenitors produces a PV-like phenotype. Our results illustrate the power of clonal analysis, indicate that the consequences of JAK2V617F reflect a balance between STAT5 and STAT1 activation and are relevant for other neoplasms associated with signaling pathway mutations.
Nature Communications | 2015
William Tapper; Amy V. Jones; Robert Kralovics; Ashot S. Harutyunyan; Katerina Zoi; William Leung; Anna L. Godfrey; Paola Guglielmelli; Alison Callaway; Daniel Ward; Paula Aranaz; Helen E. White; Katherine Waghorn; Feng Lin; Andrew Chase; E. Joanna Baxter; Cathy MacLean; Jyoti Nangalia; Edwin Chen; Paul Evans; Michael Short; Andrew Jack; Louise Wallis; David Oscier; Andrew S Duncombe; Anna Schuh; Adam Mead; Michael Griffiths; Joanne Ewing; Rosemary E. Gale
Clonal proliferation in myeloproliferative neoplasms (MPN) is driven by somatic mutations in JAK2, CALR or MPL, but the contribution of inherited factors is poorly characterized. Using a three-stage genome-wide association study of 3,437 MPN cases and 10,083 controls, we identify two SNPs with genome-wide significance in JAK2V617F-negative MPN: rs12339666 (JAK2; meta-analysis P=1.27 × 10−10) and rs2201862 (MECOM; meta-analysis P=1.96 × 10−9). Two additional SNPs, rs2736100 (TERT) and rs9376092 (HBS1L/MYB), achieve genome-wide significance when including JAK2V617F-positive cases. rs9376092 has a stronger effect in JAK2V617F-negative cases with CALR and/or MPL mutations (Breslow–Day P=4.5 × 10−7), whereas in JAK2V617F-positive cases rs9376092 associates with essential thrombocythemia (ET) rather than polycythemia vera (allelic χ2 P=7.3 × 10−7). Reduced MYB expression, previously linked to development of an ET-like disease in model systems, associates with rs9376092 in normal myeloid cells. These findings demonstrate that multiple germline variants predispose to MPN and link constitutional differences in MYB expression to disease phenotype.
British Journal of Haematology | 2013
Anthony J. Bench; Helen E. White; Letizia Foroni; Anna L. Godfrey; Gareth Gerrard; Susanna Akiki; Abida Awan; Ian Carter; Andrea Goday-Fernandez; Stephen E. Langabeer; Tim Clench; Jordan R. Clark; Paul Evans; David Grimwade; Anna Schuh; Mary Frances McMullin; Anthony R. Green; Claire N. Harrison; Nicholas C.P. Cross
Molecular genetic assays for the detection of the JAK2 V617F (c.1849G>T) and other pathogenetic mutations within JAK2 exon 12 and MPL exon 10 are part of the routine diagnostic workup for patients presenting with erythrocytosis, thrombocytosis or otherwise suspected to have a myeloproliferative neoplasm. A wide choice of techniques are available for the detection of these mutations, leading to potential difficulties for clinical laboratories in deciding upon the most appropriate assay, which can lead to problems with inter‐laboratory standardization. Here, we discuss the most important issues for a clinical diagnostic laboratory in choosing a technique, particularly for detection of the JAK2 V617F mutation at diagnosis. The JAK2 V617F detection assay should be both specific and sensitive enough to detect a mutant allele burden as low as 1–3%. Indeed, the use of sensitive assays increases the detection rate of the JAK2 V617F mutation within myeloproliferative neoplasms. Given their diagnostic relevance, it is also beneficial and relatively straightforward to screen JAK2 V617F negative patients for JAK2 exon 12 mutations (in the case of erythrocytosis) or MPL exon 10 mutations (thrombocytosis or myelofibrosis) using appropriate assays. Molecular results should be considered in the context of clinical findings and other haematological or laboratory results.
Leukemia | 2014
Bs Wyspiańska; Andrew J. Bannister; Isaia Barbieri; Jyoti Nangalia; Anna L. Godfrey; Fernando J. Calero-Nieto; Samuel Robson; I Rioja; Juan Li; M Wiese; Ester Cannizzaro; Mark A. Dawson; Brian J. P. Huntly; Rab K. Prinjha; Anthony R. Green; Berthold Göttgens; Tony Kouzarides
Small molecule inhibition of the BET family of proteins, which bind acetylated lysines within histones, has been shown to have a marked therapeutic benefit in pre-clinical models of mixed lineage leukemia (MLL) fusion protein-driven leukemias. Here, we report that I-BET151, a highly specific BET family bromodomain inhibitor, leads to growth inhibition in a human erythroleukemic (HEL) cell line as well as in erythroid precursors isolated from polycythemia vera patients. One of the genes most highly downregulated by I-BET151 was LMO2, an important oncogenic regulator of hematopoietic stem cell development and erythropoiesis. We previously reported that LMO2 transcription is dependent upon Janus kinase 2 (JAK2) kinase activity in HEL cells. Here, we show that the transcriptional changes induced by a JAK2 inhibitor (TG101209) and I-BET151 in HEL cells are significantly over-lapping, suggesting a common pathway of action. We generated JAK2 inhibitor resistant HEL cells and showed that these retain sensitivity to I-BET151. These data highlight I-BET151 as a potential alternative treatment against myeloproliferative neoplasms driven by constitutively active JAK2 kinase.
Blood | 2014
Juan Li; David G. Kent; Anna L. Godfrey; Harriet Manning; Jyoti Nangalia; Athar Aziz; Edwin Chen; Kourosh Saeb-Parsy; Juergen Fink; Rachel Sneade; Tina L. Hamilton; Dean C. Pask; Yvonne Silber; Xiaodong Zhao; Cedric Ghevaert; Pentao Liu; Anthony R. Green
Genomic regions of acquired uniparental disomy (UPD) are common in malignancy and frequently harbor mutated oncogenes. Homozygosity for such gain-of-function mutations is thought to modulate tumor phenotype, but direct evidence has been elusive. Polycythemia vera (PV) and essential thrombocythemia (ET), 2 subtypes of myeloproliferative neoplasms, are associated with an identical acquired JAK2V617F mutation but the mechanisms responsible for distinct clinical phenotypes remain unclear. We provide direct genetic evidence and demonstrate that homozygosity for human JAK2V617F in knock-in mice results in a striking phenotypic switch from an ET-like to PV-like phenotype. The resultant erythrocytosis is driven by increased numbers of early erythroid progenitors and enhanced erythroblast proliferation, whereas reduced platelet numbers are associated with impaired platelet survival. JAK2V617F-homozygous mice developed a severe hematopoietic stem cell defect, suggesting that additional lesions are needed to sustain clonal expansion. Together, our results indicate that UPD for 9p plays a causal role in the PV phenotype in patients as a consequence of JAK2V617F homozygosity. The generation of a JAK2V617F allelic series of mice with a dose-dependent effect on hematopoiesis provides a powerful model for studying the consequences of mutant JAK2 homozygosity.
Haematologica | 2013
Anna L. Godfrey; Edwin Chen; Francesca Pagano; Yvonne Silber; Peter J. Campbell; Anthony R. Green
Subclones homozygous for JAK2V617F are more common and larger in patients with polycythemia vera compared to essential thrombocythemia, but their role in determining phenotype remains unclear. We genotyped 4564 erythroid colonies from 59 patients with polycythemia vera or essential thrombocythemia to investigate whether the proportion of JAK2V617F -homozygous precursors, compared to heterozygous precursors, is associated with clinical or demographic features. In polycythemia vera, a higher proportion of homozygous-mutant precursors was associated with more extreme blood counts at diagnosis, consistent with a causal role for homozygosity in polycythemia vera pathogenesis. Larger numbers of homozygous-mutant colonies were associated with older age, and with male gender in polycythemia vera but female gender in essential thrombocythemia. These results suggest that age promotes development or expansion of homozygous-mutant clones and that gender modulates the phenotypic consequences of JAK2V617F homozygosity, thus providing a potential explanation for the long-standing observations of a preponderance of men with polycythemia vera but of women with essential thrombocythemia.
Haematologica | 2015
Jyoti Nangalia; Francesca L. Nice; David C. Wedge; Anna L. Godfrey; Jacob Grinfeld; Clare Thakker; Charlie E. Massie; Joanna Baxter; David Sewell; Yvonne Silber; Peter J. Campbell; Anthony R. Green
Somatic mutations in JAK2 , CALR and MPL are found in the majority of myeloproliferative neoplasms (MPN) but many patients also harbor somatic mutations in epigenetic regulators of DNA methylation ( TET2 , DNMT3A and IDH1/2 ) or chromatin structure ( ASXL1 and EZH2 ). In MPN patients, mutations in
Proceedings of the National Academy of Sciences of the United States of America | 2014
Edwin Chen; Jong Sook Ahn; Charlie E. Massie; David Clynes; Anna L. Godfrey; Juan Li; Hyun Jung Park; Jyoti Nangalia; Yvonne Silber; Ann Mullally; Richard J. Gibbons; Anthony R. Green
Significance Cancers arise through a succession of enabling genetic lesions, but the consequences of many driver mutations remain unclear, especially in the earliest stages of tumor formation. The myeloproliferative neoplasms (MPNs) encompass a group of chronic hematologic disorders that can collectively provide a window into these early stages of leukemia evolution. This study reveals a role for the JAK2V617F mutation, the most frequent genetic abnormality in MPN patients, in impairing replication fork progression during cell division of MPN patient-derived tumor cells. Moreover, analysis of different MPN disease subtypes reveals unexpected differences in DNA repair activity in response to JAK2V617F-induced perturbations in replication dynamics. These findings have potential implications for tumor clonal evolution and individualized cancer therapy. Cancers result from the accumulation of genetic lesions, but the cellular consequences of driver mutations remain unclear, especially during the earliest stages of malignancy. The V617F mutation in the JAK2 non-receptor tyrosine kinase (JAK2V617F) is present as an early somatic event in most patients with myeloproliferative neoplasms (MPNs), and the study of these chronic myeloid malignancies provides an experimentally tractable approach to understanding early tumorigenesis. Introduction of exogenous JAK2V617F impairs replication fork progression and is associated with activation of the intra-S checkpoint, with both effects mediated by phosphatidylinositide 3-kinase (PI3K) signaling. Analysis of clonally derived JAK2V617F-positive erythroblasts from MPN patients also demonstrated impaired replication fork progression accompanied by increased levels of replication protein A (RPA)-containing foci. However, the associated intra-S checkpoint response was impaired in erythroblasts from polycythemia vera (PV) patients, but not in those from essential thrombocythemia (ET) patients. Moreover, inhibition of p53 in PV erythroblasts resulted in more gamma-H2Ax (γ-H2Ax)–marked double-stranded breaks compared with in like-treated ET erythroblasts, suggesting the defective intra-S checkpoint function seen in PV increases DNA damage in the context of attenuated p53 signaling. These results demonstrate oncogene-induced impairment of replication fork progression in primary cells from MPN patients, reveal unexpected disease-restricted differences in activation of the intra-S checkpoint, and have potential implications for the clonal evolution of malignancies.