Anna Lapuk
Lawrence Berkeley National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anna Lapuk.
Nature Medicine | 2004
Kwai Wa Cheng; John P. Lahad; Wen Lin Kuo; Anna Lapuk; Kyosuke Yamada; Nelly Auersperg; Jinsong Liu; Karen Smith-McCune; Karen H. Lu; David A. Fishman; Joe W. Gray; Gordon B. Mills
High-density array comparative genomic hybridization (CGH) showed amplification of chromosome 1q22 centered on the RAB25 small GTPase, which is implicated in apical vesicle trafficking, in approximately half of ovarian and breast cancers. RAB25 mRNA levels were selectively increased in stage III and IV serous epithelial ovarian cancers compared to other genes within the amplified region, implicating RAB25 as a driving event in the development of the amplicon. Increased DNA copy number or RNA level of RAB25 was associated with markedly decreased disease-free survival or overall survival in ovarian and breast cancers, respectively. Forced expression of RAB25 markedly increased anchorage-dependent and anchorage-independent cell proliferation, prevented apoptosis and anoikis, including that induced by chemotherapy, and increased aggressiveness of cancer cells in vivo. The inhibition of apoptosis was associated with a decrease in expression of the proapoptotic molecules, BAK and BAX, and activation of the antiapoptotic phosphatidylinositol 3 kinase (PI3K) and AKT pathway, providing potential mechanisms for the effects of RAB25 on tumor aggressiveness. Overall, these studies implicate RAB25, and thus the RAB family of small G proteins, in aggressiveness of epithelial cancers.
Cancer Research | 2006
Shuzhong Zhang; Katherine S. Lovejoy; James E. Shima; Leah L. Lagpacan; Yan Shu; Anna Lapuk; Ying Chen; Takafumi Komori; Joe W. Gray; Xin Chen; Stephen J. Lippard; Kathleen M. Giacomini
Although the platinum-based anticancer drugs cisplatin, carboplatin, and oxaliplatin have similar DNA-binding properties, only oxaliplatin is active against colorectal tumors. The mechanisms for this tumor specificity of platinum-based compounds are poorly understood but could be related to differences in uptake. This study shows that the human organic cation transporters (OCT) 1 and 2 (SLC22A1 and SLC22A2) markedly increase oxaliplatin, but not cisplatin or carboplatin, accumulation and cytotoxicity in transfected cells, indicating that oxaliplatin is an excellent substrate of these transporters. The cytotoxicity of oxaliplatin was greater than that of cisplatin in six colon cancer cell lines [mean +/- SE of IC(50) in the six cell lines, 3.9 +/- 1.4 micromol/L (oxaliplatin) versus 11 +/- 2.0 micromol/L (cisplatin)] but was reduced by an OCT inhibitor, cimetidine, to a level similar to, or even lower than that of, cisplatin (29 +/- 11 micromol/L for oxaliplatin versus 19 +/- 4.3 micromol/L for cisplatin). Structure-activity studies indicated that organic functionalities on nonleaving groups coordinated to platinum are critical for selective uptake by OCTs. These results indicate that OCT1 and OCT2 are major determinants of the anticancer activity of oxaliplatin and may contribute to its antitumor specificity. They also strongly suggest that expression of OCTs in tumors should be investigated as markers for selecting specific platinum-based therapies in individual patients. The development of new anticancer drugs, specifically targeted to OCTs, represents a novel strategy for targeted drug therapy. The results of the present structure-activity studies indicate specific tactics for realizing this goal.
Clinical Cancer Research | 2007
Yinghui Guan; Wen Lin Kuo; Jackie L. Stilwell; Hirokuni Takano; Anna Lapuk; Jane Fridlyand; Jian-Hua Mao; Mamie Yu; Melinda A. Miller; Jennifer F. De Los Santos; Steve E. Kalloger; Joseph W. Carlson; David G. Ginzinger; Susan E. Celniker; Gordon B. Mills; David Huntsman; Joe W. Gray
Purpose: This study was designed to elucidate the role of amplification at 8q24 in the pathophysiology of ovarian and breast cancer because increased copy number at this locus is one of the most frequent genomic abnormalities in these cancers. Experimental Design: To accomplish this, we assessed the association of amplification at 8q24 with outcome in ovarian cancers using fluorescence in situ hybridization to tissue microarrays and measured responses of ovarian and breast cancer cell lines to specific small interfering RNAs against the oncogene MYC and a putative noncoding RNA, PVT1, both of which map to 8q24. Results: Amplification of 8q24 was associated with significantly reduced survival duration. In addition, small interfering RNA–mediated reduction in either PVT1 or MYC expression inhibited proliferation in breast and ovarian cancer cell lines in which they were both amplified and overexpressed but not in lines in which they were not amplified/overexpressed. Inhibition of PVT1 expression also induced a strong apoptotic response in cell lines in which it was overexpressed but not in lines in which it was not amplified/overexpressed. Inhibition of MYC, on the other hand, did not induce an apoptotic response in cell lines in which MYC was amplified and overexpressed. Conclusions: These results suggest that MYC and PVT1 contribute independently to ovarian and breast pathogenesis when overexpressed because of genomic abnormalities. They also suggest that PVT1-mediated inhibition of apoptosis may explain why amplification of 8q24 is associated with reduced survival duration in patients treated with agents that act through apoptotic mechanisms.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Stanislav Volik; Shaying Zhao; Koei Chin; John H. Brebner; David R. Herndon; Quanzhou Tao; David J. Kowbel; Guiqing Huang; Anna Lapuk; Wen Lin Kuo; Gregg Magrane; Pieter De Jong; Joe W. Gray; Colin Collins
Genome rearrangements are important in evolution, cancer, and other diseases. Precise mapping of the rearrangements is essential for identification of the involved genes, and many techniques have been developed for this purpose. We show here that end-sequence profiling (ESP) is particularly well suited to this purpose. ESP is accomplished by constructing a bacterial artificial chromosome (BAC) library from a test genome, measuring BAC end sequences, and mapping end-sequence pairs onto the normal genome sequence. Plots of BAC end-sequences density identify copy number abnormalities at high resolution. BACs spanning structural aberrations have end pairs that map abnormally far apart on the normal genome sequence. These pairs can then be sequenced to determine the involved genes and breakpoint sequences. ESP analysis of the breast cancer cell line MCF-7 demonstrated its utility for analysis of complex genomes. End sequencing of ≈8,000 clones (0.37-fold haploid genome clonal coverage) produced a comprehensive genome copy number map of the MCF-7 genome at better than 300-kb resolution and identified 381 genome breakpoints, a subset of which was verified by fluorescence in situ hybridization mapping and sequencing.
Bioinformatics | 2008
Elizabeth Purdom; Ken M. Simpson; Mark Robinson; John G. Conboy; Anna Lapuk; Terence P. Speed
Motivation: Analyses of EST data show that alternative splicing is much more widespread than once thought. The advent of exon and tiling microarrays means that researchers now have the capacity to experimentally measure alternative splicing on a genome wide level. New methods are needed to analyze the data from these arrays. Results: We present a method, finding isoforms using robust multichip analysis (FIRMA), for detecting differential alternative splicing in exon array data. FIRMA has been developed for Affymetrix exon arrays, but could in principle be extended to other exon arrays, tiling arrays or splice junction arrays. We have evaluated the method using simulated data, and have also applied it to two datasets: a panel of 11 human tissues and a set of 10 pairs of matched normal and tumor colon tissue. FIRMA is able to detect exons in several genes confirmed by reverse transcriptase PCR. Availability: R code implementing our methods is contributed to the package aroma.affymetrix. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.
Molecular Cancer Research | 2010
Anna Lapuk; Henry Marr; Lakshmi Jakkula; Helder Pedro; Sanchita Bhattacharya; Elizabeth Purdom; Zhi Hu; Ken M. Simpson; Lior Pachter; Steffen Durinck; Nicholas Wang; Bahram Parvin; Gerald Fontenay; Terence P. Speed; James C. Garbe; Martha R. Stampfer; Hovig Bayandorian; Shannon Dorton; Tyson A. Clark; Anthony C. Schweitzer; Andrew J. Wyrobek; Heidi S. Feiler; Paul T. Spellman; John G. Conboy; Joe W. Gray
Protein isoforms produced by alternative splicing (AS) of many genes have been implicated in several aspects of cancer genesis and progression. These observations motivated a genome-wide assessment of AS in breast cancer. We accomplished this by measuring exon level expression in 31 breast cancer and nonmalignant immortalized cell lines representing luminal, basal, and claudin-low breast cancer subtypes using Affymetrix Human Junction Arrays. We analyzed these data using a computational pipeline specifically designed to detect AS with a low false-positive rate. This identified 181 splice events representing 156 genes as candidates for AS. Reverse transcription-PCR validation of a subset of predicted AS events confirmed 90%. Approximately half of the AS events were associated with basal, luminal, or claudin-low breast cancer subtypes. Exons involved in claudin-low subtype–specific AS were significantly associated with the presence of evolutionarily conserved binding motifs for the tissue-specific Fox2 splicing factor. Small interfering RNA knockdown of Fox2 confirmed the involvement of this splicing factor in subtype-specific AS. The subtype-specific AS detected in this study likely reflects the splicing pattern in the breast cancer progenitor cells in which the tumor arose and suggests the utility of assays for Fox-mediated AS in cancer subtype definition and early detection. These data also suggest the possibility of reducing the toxicity of protein-targeted breast cancer treatments by targeting protein isoforms that are not present in limiting normal tissues. Mol Cancer Res; 8(7); 961–74. ©2010 AACR.
Cytometry Part A | 2005
Ronald van Marion; J.E. Vivienne Watson; Pamela L. Paris; Anna Lapuk; Nils Brown; Vanessa V. Oseroff; Donna G. Albertson; Daniel Pinkel; Pieter J. de Jong; Elizabeth Nacheva; Winand N. M. Dinjens; Herman van Dekken; Colin Collins
Array‐based comparative genomic hybridization (aCGH) enables genome‐wide quantitative delineation of genomic imbalances. A high‐resolution contig array was developed specifically for chromosome 8q because this chromosome arm is frequently altered in many human cancers.
Genes, Chromosomes and Cancer | 2004
Anna Lapuk; Stanislav Volik; Robert Vincent; Koei Chin; Wen Lin Kuo; Pieter J. de Jong; Colin Collins; Joe W. Gray
Comparative genomic hybridization (CGH) has proved to be a powerful tool for the detection of genome copy number changes in human cancers and in other diseases caused by segmental aneusomies. Array versions of CGH allow the definition of these aberrations, with resolution determined by the size and distribution of the array elements. Resolution approaching 100 kb can be achieved by use of arrays comprising bacterial artificial chromosomes (BACs) distributed contiguously across regions of interest. We describe here a computer program that automatically assembles contigs of minimally overlapping BAC clones, using information about BAC end‐sequences and the normal genome DNA sequence. We demonstrate the characteristics of contigs assembled and annotated by use of this approach for regions of recurrent abnormality in human ovarian and breast cancers at chromosome bands 3q25–q27 and 8q24 and chromosome arm 20q. We also show illustrative analyses of regions of amplification in these regions in breast and ovarian tumor cell lines by use of array CGH with arrays comprising contiguous BACs.
PLOS ONE | 2018
Leah M Prentice; Ruth R. Miller; Jeff Knaggs; Alborz Mazloomian; Rosalia Aguirre Hernandez; Patrick Franchini; Kourosh Parsa; Basile Tessier-Cloutier; Anna Lapuk; David Huntsman; David F. Schaeffer; Brandon S. Sheffield
Genomic analysis of cancer tissues is an essential aspect of personalized oncology treatment. Though it has been suggested that formalin fixation of patient tissues may be suboptimal for molecular studies, this tissue processing approach remains the industry standard. Therefore clinical molecular laboratories must be able to work with formalin fixed, paraffin embedded (FFPE) material. This study examines the effects of pre-analytic variables introduced by routine pathology processing on specimens used for clinical reports produced by next-generation sequencing technology. Tissue resected from three colorectal cancer patients was subjected to 2, 15, 24, and 48 hour fixation times in neutral buffered formalin. DNA was extracted from all tissues twice, once with uracil-N-glycosylase (UNG) treatment to counter deamination effects, and once without. Of note, deamination events at methylated cytosine, as found at CpG sites, remains unaffected by UNG. After extraction a two-step PCR targeted sequencing method was performed using the Illumina MiSeq and the data was analyzed via a custom-built bioinformatics pipeline, including filtration of reads with mapping quality <30. A larger baseline group of samples (n = 20) was examined to establish if there was a sample performance difference between the two DNA extraction methods, with/without UNG treatment. There was no statistical difference between sequencing performance of the two extraction methods when comparing read counts (raw, mapped, and filtered) and read quality (% mapped, % filtered). Analyzing mutation type, there was no significant difference between mutation calls until the 48 hour fixation treatment. At 48 hours there is a significant increase in C/G->T/A mutations that is not represented in DNA treated with UNG. This suggests these errors may be due to deamination events triggered by a longer fixation time. However the allelic frequency of these events remained below the limit of detection for reportable mutations in this assay (<2%). We do however recommend that suspected intratumoral heterogeneity events be verified by re-sequencing the same FFPE block.
Cancer Cell | 2006
Richard M. Neve; Koei Chin; Jane Fridlyand; Jennifer Yeh; Frederick L. Baehner; Tea Fevr; Laura Clark; Nora Bayani; Jean-Philippe Coppe; Frances Tong; Terry Speed; Paul T. Spellman; Sandy DeVries; Anna Lapuk; Nicholas Wang; Wen-Lin Kuo; Jackie L. Stilwell; Daniel Pinkel; Donna G. Albertson; F. Waldman; Frank McCormick; Robert B. Dickson; Michael D. Johnson; Marc E. Lippman; Stephen P. Ethier; Adi F. Gazdar; Joe W. Gray