Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anna Lee is active.

Publication


Featured researches published by Anna Lee.


Journal of the American Chemical Society | 2011

Probing Dynamic Generation of Hot-Spots in Self-Assembled Chains of Gold Nanorods by Surface-Enhanced Raman Scattering

Anna Lee; Gustavo F. S. Andrade; Aftab Ahmed; Michele L. de Souza; Neil Coombs; Ethan Tumarkin; Kun Liu; Reuven Gordon; Alexandre G. Brolo; Eugenia Kumacheva

Further progress in the applications of self-assembled nanostructures critically depends on developing a fundamental understanding of the relation between the properties of nanoparticle ensembles and their time-dependent structural characteristics. Following dynamic generation of hot-spots in the self-assembled chains of gold nanorods, we established a direct correlation between ensemble-averaged surface-enhanced Raman scattering and extinction properties of the chains. Experimental results were supported with comprehensive finite-difference time-domain simulations. The established relationship between the structure of nanorod ensembles and their optical properties provides the basis for creating dynamic, solution-based, plasmonic platforms that can be utilized in applications ranging from sensing to nanoelectronics.


Integrative Biology | 2011

High-throughput combinatorial cell co-culture using microfluidics

Ethan Tumarkin; Lsan Tzadu; Elizabeth Csaszar; Minseok Seo; Hong Zhang; Anna Lee; Raheem Peerani; Kelly A. Purpura; Peter W. Zandstra; Eugenia Kumacheva

Co-culture strategies are foundational in cell biology. These systems, which serve as mimics of in vivo tissue niches, are typically poorly defined in terms of cell ratios, local cues and supportive cell-cell interactions. In the stem cell niche, the ability to screen cell-cell interactions and identify local supportive microenvironments has a broad range of applications in transplantation, tissue engineering and wound healing. We present a microfluidic platform for the high-throughput generation of hydrogel microbeads for cell co-culture. Encapsulation of different cell populations in microgels was achieved by introducing in a microfluidic device two streams of distinct cell suspensions, emulsifying the mixed suspension, and gelling the precursor droplets. The cellular composition in the microgels was controlled by varying the volumetric flow rates of the corresponding streams. We demonstrate one of the applications of the microfluidic method by co-encapsulating factor-dependent and responsive blood progenitor cell lines (MBA2 and M07e cells, respectively) at varying ratios, and show that in-bead paracrine secretion can modulate the viability of the factor dependent cells. Furthermore, we show the application of the method as a tool to screen the impact of specific growth factors on a primary human heterogeneous cell population. Co-encapsulation of IL-3 secreting MBA2 cells with umbilical cord blood cells revealed differential sub-population responsiveness to paracrine signals (CD14+ cells were particularly responsive to locally delivered IL-3). This microfluidic co-culture platform should enable high throughput screening of cell co-culture conditions, leading to new strategies to manipulate cell fate.


ACS Nano | 2013

The donor-supply electrode enhances performance in colloidal quantum dot solar cells.

Pouya Maraghechi; André J. Labelle; Ahmad R. Kirmani; Xinzheng Lan; Michael M. Adachi; Susanna M. Thon; Sjoerd Hoogland; Anna Lee; Zhijun Ning; Armin Fischer; Aram Amassian; Edward H. Sargent

Colloidal quantum dot (CQD) solar cells combine solution-processability with quantum-size-effect tunability for low-cost harvesting of the suns broad visible and infrared spectrum. The highest-performing colloidal quantum dot solar cells have, to date, relied on a depleted-heterojunction architecture in which an n-type transparent metal oxide such as TiO2 induces a depletion region in the p-type CQD solid. These devices have, until now, been limited by a modest depletion region depth produced in the CQD solid owing to limitations in the doping available in TiO2. Herein we report a new device geometry-one based on a donor-supply electrode (DSE)-that leads to record-performing CQD photovoltaic devices. Only by employing this new charge-extracting approach do we deepen the depletion region in the CQD solid and thereby extract notably more photocarriers, the key element in achieving record photocurrent and device performance. With the use of optoelectronic modeling corroborated by experiment, we develop the guidelines for building a superior CQD solar cell based on the DSE concept. We confirm that using a shallow-work-function terminal electrode is essential to producing improved charge extraction and enhanced performance.


Nano Letters | 2013

Jointly Tuned Plasmonic–Excitonic Photovoltaics Using Nanoshells

Daniel Paz-Soldan; Anna Lee; Susanna M. Thon; Michael M. Adachi; Haopeng Dong; Pouya Maraghechi; Mingjian Yuan; André J. Labelle; Sjoerd Hoogland; Kun Liu; Eugenia Kumacheva; Edward H. Sargent

Recent advances in spectrally tuned, solution-processed plasmonic nanoparticles have provided unprecedented control over lights propagation and absorption via engineering at the nanoscale. Simultaneous parallel progress in colloidal quantum dot photovoltaics offers the potential for low-cost, large-area solar power; however, these devices suffer from poor quantum efficiency in the more weakly absorbed infrared portion of the suns spectrum. Here, we report a plasmonic-excitonic solar cell that combines two classes of solution-processed infrared materials that we tune jointly. We show through experiment and theory that a plasmonic-excitonic design using gold nanoshells with optimized single particle scattering-to-absorption cross-section ratios leads to a strong enhancement in near-field absorption and a resultant 35% enhancement in photocurrent in the performance-limiting near-infrared spectral region.


Nano Letters | 2009

CdSe nanoparticle elasticity and surface energy.

Vanessa M. Huxter; Anna Lee; Shun S. Lo; Gregory D. Scholes

The acoustic phonon modes of colloidal CdSe nanoparticles in solution (293 K) are passively measured by a third order ultrafast heterodyne cross-polarized transient grating measurement. Using the observed size-dependence of the acoustic phonon frequency, the elastic properties of the nanoparticles are determined. The size-dependence of the elastic modulus is then used to ascertain information about the relative surface energies of the nanocrystals and suggests the extent and depth of surface reconstruction.


Journal of the American Chemical Society | 2008

Nanoscale co-organization of quantum dots and conjugated polymers using polymeric micelles as templates.

Mingfeng Wang; Sandeep Kumar; Anna Lee; Neda Felorzabihi; Lei Shen; Fei Zhao; Pablo Froimowicz; Gregory D. Scholes; Mitchell A. Winnik

Hierarchical organization of light-absorbing molecules is integral to natural light harvesting complexes and has been mimicked by elegant chemical systems. A challenge is to attain such spatial organization among nanoscale systems. Interactions between nanoscale systems, e.g., conjugated polymers, carbon nanotubes, quantum dots, and so on, are of interest for basic and applied reasons. However, typically the excited-state interactions and dynamics are examined in rather complex blends, such as cast films. A model system with complexity intermediate between a film and a supramolecular system would yield helpful insights into electronic energy and charge transfer. Here, we report a simple and versatile approach to achieving spatially defined organization of colloidal CdSe, CdSe/ZnS core/shell, or PbS nanocrystals (quantum dots) with poly(3-hexylthiophenes) (P3HTs) using micelles of poly(styrene-b-4-vinylpyridine) (PS-b-P4VP) as the main structural motif. We compare the characteristics of this system to those of natural light-harvesting complexes. Bulk heterojunction films (and related systems) are characterized by electronic interactions, and therefore dynamics of charge and energy transfer, at interfaces rather than between specific donor-acceptor molecules. Owing to structural disorder, such systems are inherently complex. Therefore, we expect that the spatially defined organization of the active components in the present system provides new opportunities for studying the complicated photophysics intrinsic to blends of nanoscale systems, such as bulk heterojunctions by establishing simplified and better controlled interfaces.


ACS Nano | 2014

Rational design for the controlled aggregation of gold nanorods via phospholipid encapsulation for enhanced Raman scattering.

Alexander F. Stewart; Anna Lee; Aftab Ahmed; Shell Ip; Eugenia Kumacheva; Gilbert C. Walker

This study describes a procedure that found a balance between the ability of polymer-stabilized nanorods (NRs) to self-assemble and the creation of narrow gaps to make reproducibly bright surface-enhanced Raman scattering (SERS) nanorod dimers. NRs were end-functionalized with polymers, which enabled end-to-end self-assembly of NR chains and control over inter-rod separation through polymer molecular weight (MW). We found a way to quench the self-assembly, by phospholipid encapsulation, reducing the polydispersity of the aggregates while rendering them water-soluble. This reduction in polydispersity and preferential isolation of short-chain nanorod species is important for maximizing SERS enhancement from nanorod chains. We prepared NR aggregates that exhibit ∼5-50 times greater SERS intensity than isolated rods (and ∼750× greater than bare dye) depending on inter-rod separation, when using Oxazine 725 reporter molecules. Colloidal stability of NR aggregates and temporal stability of the SERS signal in water were observed for 110 days. With enhanced SERS intensity, water solubility, and stability, these NR aggregates are promising optical probes for future biological applications.


Journal of Physical Chemistry B | 2008

Pulsed Field Gradient NMR Studies of Polymer Adsorption on Colloidal CdSe Quantum Dots

Lei Shen; Ronald Soong; Mingfeng Wang; Anna Lee; Chi Wu; Gregory D. Scholes; Peter M. Macdonald; Mitchell A. Winnik

Pulsed field gradient nuclear magnetic resonance (PFG NMR) experiments have been used to examine ligand exchange between poly(2-(N,N-dimethylamino)ethyl methacrylate) (PDMA) (Mn = 12,000, Mw/Mn = 1.20, Nn = 78) and trioctylphosphine oxide (TOPO) bound to the surface of CdSe/TOPO quantum dots (QDs). We show that PFG 1H NMR can quantify the displacement of TOPO by PDMA through its ability to differentiate signals due to TOPO bound to the QDs versus those from TOPO molecules free in solution. For CdSe QDs with a band edge absorption maximum at 558 nm (diameter 2.7 nm by transmission electron microscopy), we determined that, at saturation, 8 polymer chains on average displace greater than 90% of the surface TOPO groups. At partial saturation, with an average of 6 polymer chains/QD, each TOPO displaced requires 28 DMA repeat units. Assuming that one Me2N- group binds to a surface Cd2+ for each TOPO displaced, we infer that only about 3% of the DMA units are directly bound to the surface. The remaining groups are present as loops or tails that protrude into the solvent and increase the hydrodynamic diameter of the particles.


Optics Letters | 2012

Examining metal nanoparticle surface chemistry using hollow-core, photonic-crystal, fiber-assisted SERS.

Fatemeh Eftekhari; Anna Lee; Eugenia Kumacheva; Amr S. Helmy

In this Letter, we demonstrate the efficacy of hollow core photonic crystal fibers (HCPCFs) as a surface-enhanced Raman spectroscopy (SERS) platform for investigating the ligand exchange process on the surface of gold nanoparticles. Raman measurements carried out using this platform show the capability to monitor minute amounts of surface ligands on gold nanoparticles used as an SERS substrate. The SERS signal from an HCPCF exhibits a tenfold enhancement compared to that in a direct sampling scheme using a cuvette. Using exchange of cytotoxic cetyltrimethylammonium bromide with α-methoxy-ω-mercaptopoly(ethylene glycol) on the surface of gold nanorods as an exemplary system, we show the feasibility of using HCPCF SERS to monitor the change in surface chemistry of nanoparticles.


Macromolecules | 2010

Sphere-to-Wormlike Network Transition of Block Copolymer Micelles Containing CdSe Quantum Dots in the Corona

Meng Zhang; Mingfeng Wang; Shu He; Jieshu Qian; Amir Saffari; Anna Lee; Sandeep Kumar; Yasser Hassan; Axel Guenther; Gregory D. Scholes; Mitchell A. Winnik

Collaboration


Dive into the Anna Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aftab Ahmed

University of Victoria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge