Anna Lisa Muntoni
University of Cagliari
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anna Lisa Muntoni.
The Journal of Neuroscience | 2004
Miriam Melis; Marco Pistis; Simona Perra; Anna Lisa Muntoni; Giuliano Pillolla; Gian Luigi Gessa
The endogenous cannabinoid system has been shown to play a crucial role in controlling neuronal excitability and synaptic transmission. In this study we investigated the effects of a cannabinoid receptor (CB-R) agonist WIN 55,212-2 (WIN) on excitatory synaptic transmission in the rat ventral tegmental area (VTA). Whole-cell patch clamp recordings were performed from VTA dopamine (DA) neurons in an in vitro slice preparation. WIN reduced both NMDA and AMPA EPSCs, as well as miniature EPSCs (mEPSCs), and increased the paired-pulse ratio, indicating a presynaptic locus of its action. We also found that WIN-induced effects were dose-dependent and mimicked by the CB1-R agonist HU210. Furthermore, two CB1-R antagonists, AM281 and SR141716A, blocked WIN-induced effects, suggesting that WIN modulates excitatory synaptic transmission via activation of CB1-Rs. Our additional finding that both AM281 and SR141716A per se increased NMDA EPSCs suggests that endogenous cannabinoids, released from depolarized postsynaptic neurons, might act retrogradely on presynaptic CB1-Rs to suppress glutamate release. Hence, we report that a type of synaptic modulation, previously termed depolarization-induced suppression of excitation (DSE), is present also in the VTA as a calcium-dependent phenomenon, blocked by both AM281 and SR141716A, and occluded by WIN. Importantly, DSE was partially blocked by the D2DA antagonist eticlopride and enhanced by the D2DA agonist quinpirole without changing the presynaptic cannabinoid sensitivity. These results indicate that the two pathways work in a cooperative manner to release endocannabinoids in the VTA, where they play a role as retrograde messengers for DSE via CB1-Rs.
The Journal of Neuroscience | 2004
Miriam Melis; Simona Perra; Anna Lisa Muntoni; Giuliano Pillolla; Beat Lutz; Giovanni Marsicano; V. Di Marzo; Gian Luigi Gessa; Marco Pistis
Endocannabinoids form a novel class of retrograde messengers that modulate short- and long-term synaptic plasticity. Depolarization-induced suppression of excitation (DSE) and inhibition (DSI) are the best characterized transient forms of endocannabinoid-mediated synaptic modulation. Stimulation protocols consisting of long-lasting voltage steps to the postsynaptic cell are routinely used to evoke DSE-DSI. Little is known, however, about more physiological conditions under which these molecules are released in vitro. Moreover, the occurrence in vivo of such forms of endocannabinoid-mediated modulation is still controversial. Here we show that physiologically relevant patterns of synaptic activity induce a transient suppression of excitatory transmission onto dopamine neurons in vitro. Accordingly, in vivo endocannabinoids depress the increase in firing and bursting activity evoked in dopamine neurons by prefrontal cortex stimulation. This phenomenon is selectively mediated by the endocannabinoid 2-arachidonoyl-glycerol (2-AG), which activates presynaptic cannabinoid type 1 receptors. 2-AG synthesis involves activation of metabotropic glutamate receptors and Ca2+ mobilization from intracellular stores. These findings indicate that dopamine neurons release 2-AG to shape afferent activity and ultimately their own firing pattern. This novel endocannabinoid-mediated self-regulatory role of dopamine neurons may bear relevance in the pathogenesis of neuropsychiatric disorders such as schizophrenia and addiction.
Biological Psychiatry | 2004
Marco Pistis; Simona Perra; Giuliano Pillolla; Miriam Melis; Anna Lisa Muntoni; Gian Luigi Gessa
BACKGROUND Recent studies have raised concerns about subtle long-lasting neurobiological changes that might be triggered by exposure to Cannabis derivatives, especially in a critical phase of brain maturation, such as puberty. The mesolimbic dopamine (DA) system, involved in the processing of drug-induced reward, is a locus of action of cannabinoids and endocannabinoids. Thus, we compared the effects of repeated cannabinoid administration in adolescent and adult rats on DA neuronal functions and responses to drugs of abuse. METHODS Single-unit extracellular recordings from antidromically identified mesoaccumbens DA neurons and from their target cells in the nucleus accumbens were carried out in urethane-anesthetized rats. Animals were pretreated during adolescence or adulthood, for 3 days, with the cannabinoid agonist WIN55212.2 (WIN) or vehicle and allowed a 2-week interval. RESULTS In cannabinoid-administered rats, DA neurons were significantly less responsive to the stimulating action of WIN, regardless of the age of pretreatment; however, in the adolescent group, but not in the adult, long-lasting cross-tolerance developed to morphine, cocaine, and amphetamine. CONCLUSIONS Our study suggests that an enduring form of neuronal adaptation occurs in DA neurons after subchronic cannabinoid intake at a young age, affecting subsequent responses to drugs of abuse.
The Journal of Neuroscience | 2008
Miriam Melis; Giuliano Pillolla; Antonio Luchicchi; Anna Lisa Muntoni; Sevil Yasar; Steven R. Goldberg; Marco Pistis
Nicotine stimulates the activity of mesolimbic dopamine neurons, which is believed to mediate the rewarding and addictive properties of tobacco use. Accumulating evidence suggests that the endocannabinoid system might play a major role in neuronal mechanisms underlying the rewarding properties of drugs of abuse, including nicotine. Here, we investigated the modulation of nicotine effects by the endocannabinoid system on dopamine neurons in the ventral tegmental area with electrophysiological techniques in vivo and in vitro. We discovered that pharmacological inhibition of fatty acid amide hydrolase (FAAH), the enzyme that catabolizes fatty acid ethanolamides, among which the endocannabinoid anandamide (AEA) is the best known, suppressed nicotine-induced excitation of dopamine cells. Importantly, this effect was mimicked by the administration of the FAAH substrates oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), but not methanandamide, the hydrolysis resistant analog of AEA. OEA and PEA are naturally occurring lipid signaling molecules structurally related to AEA, but devoid of affinity for cannabinoid receptors. They blocked the effects of nicotine by activation of the peroxisome proliferator-activated receptor-α (PPAR-α), a nuclear receptor transcription factor involved in several aspects of lipid metabolism and energy balance. Activation of PPAR-α triggered a nongenomic stimulation of tyrosine kinases, which might lead to phosphorylation and negative regulation of neuronal nicotinic acetylcholine receptors. These data indicate for the first time that the anorexic lipids OEA and PEA possess neuromodulatory properties as endogenous ligands of PPAR-α in the brain and provide a potential new target for the treatment of nicotine addiction.
Neuropharmacology | 2004
Marco Pistis; Simona Perra; Giuliano Pillolla; Miriam Melis; Gian Luigi Gessa; Anna Lisa Muntoni
Recent evidence indicates that the basolateral amygdala (BLA) may be involved in behavioural effects induced by cannabinoids. High levels of CB1 cannabinoid receptors have been shown in this region, where they modulate excitatory and inhibitory synaptic transmission. However, the neurophysiological effects of these opposing synaptic actions have not been investigated in vivo. To this purpose, single-unit extracellular recordings were performed in urethane anaesthetized rats in order to determine whether exogenously applied cannabinoids influenced the spontaneous or evoked electrical activity of neurons in the BLA. The effects of cannabinoids were found to be dependent on the characteristics of the neurons examined and on the properties of the agents used. We tested and compared two structurally different synthetic cannabinoid receptor agonists, the highly potent HU-210 (0.125-1.0 mg/kg, i.v.) and WIN55212-2 (WIN, 0.125-1.0 mg/kg, i.v.). With a CB1 cannabinoid receptor-dependent mechanism, HU-210 potently inhibited the firing rate of BLA interneurons whereas WIN modulated the discharge rate in a biphasic manner. By contrast, BLA projection neurons, antidromically identified from the shell of the nucleus accumbens, were significantly inhibited by WIN at all doses tested, while HU-210 administration led to less consistent effects, since only 1.0 mg/kg inhibited firing rate in the majority of recorded neurons. Additionally, WIN, but not HU-210, significantly attenuated short-latency spiking activity in BLA projection neurons evoked by electrical stimulation of the medial prefrontal cortex. In these neurons, WIN-induced effects were antagonised by the non-selective cannabinoid receptor antagonist SR141716A and by the vanilloid receptor antagonist capsazepine, but not by the selective CB1 antagonist AM-251. Taken together, our findings indicate that the overall excitability of efferent neurons in the BLA is strongly reduced by WIN in a non-CB1-dependent manner. In this effect, the contribution of a novel cannabinoid-vanilloid-sensitive putative non-CB1 receptors, the existence of which was postulated in recent reports, might play a role.
Neuropsychopharmacology | 2012
Salvatore Lecca; Miriam Melis; Antonio Luchicchi; Anna Lisa Muntoni; Marco Pistis
The rostromedial tegmental nucleus (RMTg), a structure located just posterior to the ventral tegmental area (VTA), is an important site involved in aversion processes. The RMTg contains γ-aminobutyric acid neurons responding to noxious stimuli, densely innervated by the lateral habenula and providing a major inhibitory projection to reward-encoding dopamine (DA) neurons in the VTA. Here, we studied how RMTg neurons regulate both spontaneous firing of DA cells and their response to the cannabinoid agonist WIN55212-2 (WIN), morphine, cocaine, and nicotine. We utilized single-unit extracellular recordings in anesthetized rats and whole-cell patch clamp recordings in brain slices to study RMTg-induced inhibition of DA cells and inhibitory postsynaptic currents (IPSCs) evoked by stimulation of caudal afferents, respectively. The electrical stimulation of the RMTg elicited a complete suppression of spontaneous activity in approximately half of the DA neurons examined. RMTg-induced inhibition correlated with firing rate and pattern of DA neurons and with their response to a noxious stimulus, highlighting that inhibitory inputs from the RMTg strongly control spontaneous activity of DA cells. Both morphine and WIN depressed RMTg-induced inhibition of DA neurons in vivo and IPSCs evoked by RMTg stimulation in brain slices with presynaptic mechanisms. Conversely, neither cocaine nor nicotine modulated DA neuron responses to RMTg stimulation. Our results further support the role of the RMTg as one of the main inhibitory afferents to DA cells and suggest that cannabinoids and opioids might disinhibit DA neurons by profoundly influencing synaptic responses evoked by RMTg activation.
European Journal of Neuroscience | 1999
Marco Diana; Anna Lisa Muntoni; Marco Pistis; Miriam Melis; Gian Luigi Gessa
The activity of mesolimbic dopaminergic neurons was investigated in rats at various times after a chronic regimen of morphine, which produced, upon suspension, a marked somatic withdrawal syndrome. Single‐cell extracellular recording techniques, coupled with antidromic identification from the nucleus accumbens, were used to monitor neuronal activity while behavioural observations allowed quantification of the somatic signs of morphine withdrawal. Temporal correlation of electrophysiological indices, such as firing rate and burst firing, with scores obtained through behavioural assessments proved negative, in that somatic signs were pronounced at 24 h after suspension of treatment and then subsided to control values at 72 h after the last morphine injection. In contrast, the firing rate and burst firing of mesolimbic dopaminergic neurons were found to be reduced at 1, 3 and 7 days after morphine withdrawal. After 14 drug‐free days, electrophysiological analysis revealed an apparent normalization of various parameters. However, at this time, intravenous administration of morphine produced an increment of electrical activity which was significantly higher than that obtained in control (saline treated) rats. Further, administration of the opiate antagonist naltrexone, administered without prior morphine, at 3, 7 and 14 days after the last morphine administration, failed to alter dopaminergic neuronal activity. The results indicate: (i) that the activity of mesolimbic dopaminergic neurons remains reduced well after somatic signs of withdrawal have disappeared; (ii) after 14 days of withdrawal, the augmented magnitude of the electrophysiological response to exogenous morphine suggests an increased sensitivity of opiate receptors; and (iii) the lack of relationship between dopaminergic activity and somatic signs of withdrawal corroborates the notion that dopaminergic activity in the mesolimbic system does not participate in the neurobiological mechanisms responsible for somatic withdrawal. The present results may be relevant to the phenomenon of drug addiction in humans and consequent relapse after drug‐free periods.
Neuropsychopharmacology | 2011
Salvatore Lecca; Miriam Melis; Antonio Luchicchi; Maria Grazia Ennas; Maria Paola Castelli; Anna Lisa Muntoni; Marco Pistis
Recent findings have underlined the rostromedial tegmental nucleus (RMTg), a structure located caudally to the ventral tegmental area, as an important site involved in the mechanisms of aversion. RMTg contains γ-aminobutyric acid neurons responding to noxious stimuli, densely innervated by the lateral habenula and providing a major inhibitory projection to reward-encoding midbrain dopamine (DA) neurons. One of the key features of drug addiction is the perseverance of drug seeking in spite of negative and unpleasant consequences, likely mediated by response suppression within neural pathways mediating aversion. To investigate whether the RMTg has a function in the mechanisms of addicting drugs, we studied acute effects of morphine, cocaine, the cannabinoid agonist WIN55212-2 (WIN), and nicotine on putative RMTg neurons. We utilized single unit extracellular recordings in anesthetized rats and whole-cell patch-clamp recordings in brain slices to identify and characterize putative RMTg neurons and their responses to drugs of abuse. Morphine and WIN inhibited both firing rate in vivo and excitatory postsynaptic currents (EPSCs) evoked by stimulation of rostral afferents in vitro, whereas cocaine inhibited discharge activity without affecting EPSC amplitude. Conversely, nicotine robustly excited putative RMTg neurons and enhanced EPSCs, an effect mediated by α7-containing nicotinic acetylcholine receptors. Our results suggest that activity of RMTg neurons is profoundly influenced by drugs of abuse and, as important inhibitory afferents to midbrain DA neurons, they might take place in the complex interplay between the neural circuits mediating aversion and reward.
European Journal of Neuroscience | 2006
Anna Lisa Muntoni; Giuliano Pillolla; Miriam Melis; Simona Perra; Gian Luigi Gessa; Marco Pistis
The noradrenergic pathway arising from the locus coeruleus (LC) is involved in the regulation of attention, arousal, cognitive processes and sleep. These physiological activities are affected by Cannabis exposure − both in humans and laboratory animals. In addition, exogenous cannabinoids, as well as pharmacological and genetic manipulation of the endocannabinoid system, are known to influence emotional states (e.g. anxiety) for which a contributory role of the LC‐noradrenergic system has long been postulated. However, whether cannabinoid administration would affect the LC neuronal activity in vivo is still unknown. To this end, single‐unit extracellular recordings were performed from LC noradrenergic cells in anaesthetized rats. Intravenous injection of both the synthetic cannabinoid agonist, WIN55212‐2, and the main psychoactive principle of Cannabis, Δ9‐tetrahydrocannabinol, dose‐dependently increased the firing rate of LC noradrenergic neurons, with WIN55212‐2 being the most efficacious. Similar results were obtained by the administration of these drugs into a lateral ventricle. Cannabinoid‐induced stimulation of LC noradrenergic neuronal activity was counteracted by SR141716A, a cannabinoid receptor antagonist/reverse agonist, which by itself slightly reduced LC discharge rate. Moreover, WIN55212‐2 suppressed the inhibition of noradrenergic cells produced by stimulation of the major γ‐aminobutyric acid (GABA)ergic afferent to the LC, the nucleus prepositus hypoglossi. Altogether, these findings suggest the involvement of noradrenergic pathways in some consequences of Cannabis intake (e.g. cognitive and attention deficits, anxiety reactions), as well as a role for cannabinoid receptors in basic brain activities sustaining arousal and emotional states.
European Journal of Neuroscience | 2002
Marco Pistis; Anna Lisa Muntoni; Giuliano Pillolla; Gian Luigi Gessa
The nucleus accumbens (NAc) represents a critical site for the rewarding properties of diverse classes of drugs of abuse. Glutamatergic afferents to the NAc are involved in the actions of psychostimulants and opioids, while the potentiation of dopaminergic neurotransmission in the NAc is a common feature of abused drugs, including cannabinoids. Cannabinoid receptors (CB1) are densely expressed in regions that provide excitatory innervation to the NAc, such as the amygdala, the cortex and the hippocampus. Recent in vitro evidence suggests that indeed cannabinoids modulate glutamatergic synapses in the NAc. In this study we recorded extracellularly from neurons in the shell of the NAc which responded to the stimulation of the baso‐lateral amygdala (BLA) or the medial prefrontal cortex (PFC) in urethane anaesthetized rats. BLA or PFC stimulation induced generation of action potentials in NAc neurons. This excitatory effect was strongly inhibited by the synthetic cannabinoid agonists WIN 55212,2 (0.062–0.25 mg/kg, i.v.) and HU‐210 (0.125–0.25 mg/kg, i.v.) or the psychoactive principle of Cannabis delta(9)‐tetrahydrocannabinol (1.0 mg/kg, i.v.). Neither the D1 or D2 dopamine receptor antagonists (SCH23390 0.5–1.0 mg/kg, sulpiride 5–10 mg/kg, i.v.) or the opioid antagonist naloxone (1.0 mg/kg, i.v.) were able to reverse the action of cannabinoids, while the selective CB1 receptor antagonist/reverse agonist SR141716A (0.5 mg/kg, i.v.) fully suppressed the action of cannabinoid agonists, whereas per se had no significant effect. These results provide evidence that cannabinoids, in common with other drugs of abuse, in vivo strongly inhibit the excitability of neurons in the shell of the NAc.